
System Identification Toolbox™

Reference

R2013a

Lennart Ljung

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox™ Reference

© COPYRIGHT 1988–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2007 Online only Revised for Version 7.1 (Release 2007b)
March 2008 Online only Revised for Version 7.2 (Release 2008a)
October 2008 Online only Revised for Version 7.2.1 (Release 2008b)
March 2009 Online only Revised for Version 7.3 (Release 2009a)
September 2009 Online only Revised for Version 7.3.1 (Release 2009b)
March 2010 Online only Revised for Version 7.4 (Release 2010a)
September 2010 Online only Revised for Version 7.4.1 (Release 2010b)
April 2011 Online only Revised for Version 7.4.2 (Release 2011a)
September 2011 Online only Revised for Version 7.4.3 (Release 2011b)
April 2012 Online only Revised for Version 8.0 (Release 2012a)
September 2012 Online only Revised for Version 8.1 (Release 2012b)
March 2013 Online only Revised for Version 8.2 (Release 2013a)

Contents

Functions – Alphabetical List

1

Blocks — Alphabetical List

2

Index

v

vi Contents

1

Functions – Alphabetical
List

absorbDelay

Purpose Replace time delays by poles at z = 0 or phase shift

Syntax sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic
system model sysd into the system dynamics or the frequency response
data.

For discrete-time models (other than frequency response data models),
a delay of k sampling periods is replaced by k poles at z = 0. For
continuous-time models (other than frequency response data models),
time delays have no exact representation with a finite number of poles
and zeros. Therefore, use pade to compute a rational approximation of
the time delay.

For frequency response data models in both continuous and discrete
time, absorbDelay absorbs all time delays into the frequency response
data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the
initial states of the ss model sysd to the initial states of the sysnd.

Examples Example 1

Create a discrete-time transfer function that has a time delay and
absorb the time delay into the system dynamics as poles at z = 0.

z = tf('z',-1);
sysd = (-.4*z -.1)/(z^2 + 1.05*z + .08);
sysd.InputDelay = 3

These commands produce the result:

Transfer function:
-0.4 z - 0.1

z^(-3) * -------------------
z^2 + 1.05 z + 0.08

1-2

absorbDelay

Sampling time: unspecified

The display of sysd represents the InputDelay as a factor of z^(-3),
separate from the system poles that appear in the transfer function
denominator.

Absorb the delay into the system dynamics.

sysnd = absorbDelay(sysd)

The display of sysnd shows that the factor of z^(-3) has been absorbed
as additional poles in the denominator.

Transfer function:
-0.4 z - 0.1

z^5 + 1.05 z^4 + 0.08 z^3

Sampling time: unspecified

Additionally, sysnd has no input delay:

sysnd.InputDelay

ans =

0

Example 2

Convert "nk" into regular coefficients of a polynomial model.

Consider the discrete-time polynomial model:

m = idpoly(1,[0 0 0 2 3]);

The value of the B polynomial, m.b, has 3 leading zeros. Two of these
zeros are treated as input-output delays. Consequently:

sys = tf(m)

1-3

absorbDelay

creates a transfer function such that the numerator is [0 2 3] and the IO
delay is 2. In order to treat the leading zeros as regular B coefficients,
use absorbDelay:

m2 = absorbDelay(m);
sys2 = tf(m2);

sys2's numerator is [0 0 0 2 3] and IO delay is 0. The model m2
treats the leading zeros as regular coefficients by freeing their values.
m2.Structure.b.Free(1:2) is TRUE while m.Structure.b.Free(1:2)
is FALSE.

See Also hasdelay | pade | totaldelay

1-4

advice

Purpose Analysis and recommendations for data or estimated linear models

Syntax advice(data)
advice(model,data)

Description advice(data) displays the following information about the data in
the MATLAB® Command Window:

• What are the excitation levels of the signals and how does this affect
the model orders? See also pexcit.

• Does it make sense to remove constant offsets and linear trends from
the data? See also detrend.

• Is there an indication of output feedback in the data? See also
feedback.

• Would a nonlinear ARX model perform better than a linear ARX
model?

advice(model,data) displays the following information about the
estimated linear model in the MATLAB Command Window:

• Does the model capture essential dynamics of the system and the
disturbance characteristics?

• Is the model order higher than necessary?

• Is there potential output feedback in the validation data?

Input
Arguments

data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model
object.

See Also detrend | feedback | iddata | pexcit

1-5

addreg

Purpose Add custom regressors to nonlinear ARX model

Syntax m = addreg(model,regressors)
m = addreg(model,regressors,output)

Description m = addreg(model,regressors) adds custom regressors to a nonlinear
ARX model by appending the CustomRegressors model property. model
and m are idnalrx objects. For single-output models, regressors is
an object array of regressors you create using customreg or polyreg,
or a cell array of string expressions. For multiple-output models,
regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell
array of cell arrays of string expressions. addreg adds each element of
the ny cells to the corresponding model output channel. If regressors
is a single regressor, addreg adds this regressor to all output channels.

m = addreg(model,regressors,output) adds regressors regressors
to specific output channels output of a multiple-output model. output
is a scalar integer or vector of integers, where each integer is the index
of a model output channel. Specify several pairs of regressors and
output values to add different regressor variables to the corresponding
output channels.

Examples Add regressors to a nonlinear ARX model as a cell array of strings:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);

% Create model with additional custom regressors:
m2 = addreg(m1,{'y1(t-2)^2';'u1(t)*y1(t-7)'})

% List all standard and custom regressors of m2:
getreg(m2)

Add regressors to a nonlinear ARX model as customreg objects:

% Create nonlinear ARX model with standard regressors:
m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);

% Create a model based on m1 with custom regressors:

1-6

addreg

r1 = customreg(@(x)x^2, {'y1'}, 2)
r2 = customreg(@(x,y)x*y, {'u1','y1'}, [0 7])
m2 = addreg(m1,[r1 r2]);

See Also customreg | getreg | nlarx | polyreg

How To • “Identifying Nonlinear ARX Models”

1-7

aic

Purpose Akaike Information Criterion for estimated model

Syntax am = aic(model)
am = aic(model1,model2,...)

Description am = aic(model) returns a scalar value of the “Akaike’s Information
Criterion (AIC)” on page 1-8 for the estimated model.

am = aic(model1,model2,...) returns a row vector containing AIC
values for the estimated models model1,model2,....

Arguments model
Name of an idtf, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

Definitions Akaike’s Information Criterion (AIC)

Akaike’s Information Criterion (AIC) provides a measure of model
quality by simulating the situation where the model is tested on a
different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest AIC.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Information Criterion (AIC) is defined by the following
equation:

AIC V
d

N
= +log

2

where V is the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

1-8

aic

The loss function V is defined by the following equation:

V t tN N N
TN

= () ()()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑det , ,1

1
ε θ ε θ

where θN represents the estimated parameters.

For d<<N:

AIC V
d

N
= +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝
⎜

⎞
⎠
⎟log 1

2

Note AIC is approximately equal to log(FPE).

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See sections about the statistical
framework for parameter estimation and maximum likelihood method
and comparing model structures.

See Also fpe

1-9

append

Purpose Group models by appending their inputs and outputs

Syntax sys = append(sys1,sys2,...,sysN)

Description sys = append(sys1,sys2,...,sysN)

append appends the inputs and outputs of the models sys1,...,sysN to
form the augmented model sys depicted below.

For systems with transfer functions H1(s), . . . , HN(s), the resulting
system sys has the block-diagonal transfer function

H s
H s

H sN

1

2

0 0
0

0
0 0

()
()

()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

For state-space models sys1 and sys2 with data (A1, B1, C1, D1) and
(A2, B2, C2, D2), append(sys1,sys2) produces the following state-space
model:

1-10

append

x
x

A
A

x
x

B
B

u
u

1

2

1

2

1

2

1

2

1

2

0
0

0
0

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

yy
y

C
C

x
x

D
D

u
u

1

2

1

2

1

2

1

2

1

2

0
0

0
0

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

Arguments The input arguments sys1,..., sysN can be model objects s of any type.
Regular matrices are also accepted as a representation of static gains,
but there should be at least one model in the input list. The models
should be either all continuous, or all discrete with the same sample
time. When appending models of different types, the resulting type
is determined by the precedence rules (see “Precedence Rules That
Determine Model Type” for details).

There is no limitation on the number of inputs.

Examples The commands

sys1 = tf(1,[1 0]);
sys2 = ss(1,2,3,4);
sys = append(sys1,10,sys2)

produce the state-space model

a =
x1 x2

x1 0 0
x2 0 1

b =
u1 u2 u3

x1 1 0 0
x2 0 0 2

c =
x1 x2

y1 1 0

1-11

append

y2 0 0
y3 0 3

d =
u1 u2 u3

y1 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time model.

See Also connect | feedback | parallel | series

1-12

ar

Purpose Estimate parameters of AR model for scalar time series

Syntax m = ar(y,n)
[m,ref1] = ar(y,n,approach,window)
m= ar(y,n,Name,Value)
m= ar(y,n, ___ ,opt)

Description
Note Use for scalar time series only. For multivariate data, use arx.

m = ar(y,n) returns an idpoly model m.

[m,ref1] = ar(y,n,approach,window) returns an idpoly model m
and the variable refl. For the two lattice-based approaches, 'burg'
and 'gl', refl stores the reflection coefficients in the first row, and the
corresponding loss function values in the second row. The first column
of refl is the zeroth-order model, and the (2,1) element of refl is
the norm of the time series itself.

m= ar(y,n,Name,Value) specifies model structure attributes using one
or more Name,Value pair arguments.

m= ar(y,n, ___ ,opt) specifies the estimations options using opt.

Input
Arguments

y

iddata object that contains the time-series data (one output channel).

n

Scalar that specifies the order of the model you want to estimate (the
number of A parameters in the AR model).

approach

One of the following text strings, specifying the algorithm for computing
the least squares AR model:

1-13

ar

• 'burg': Burg’s lattice-based method. Solves the lattice filter
equations using the harmonic mean of forward and backward
squared prediction errors.

• 'fb': (Default) Forward-backward approach. Minimizes the sum of
a least- squares criterion for a forward model, and the analogous
criterion for a time-reversed model.

• 'gl': Geometric lattice approach. Similar to Burg’s method, but
uses the geometric mean instead of the harmonic mean during
minimization.

• 'ls': Least-squares approach. Minimizes the standard sum of
squared forward-prediction errors.

• 'yw': Yule-Walker approach. Solves the Yule-Walker equations,
formed from sample covariances.

window

One of the following text strings, specifying how to use information
about the data outside the measured time interval (past and future
values):

• 'now': (Default) No windowing. This value is the default except
when the approach argument is 'yw'. Only measured data is used
to form regression vectors. The summation in the criteria starts at
the sample index equal to n+1.

• 'pow': Postwindowing. Missing end values are replaced with zeros
and the summation is extended to time N+n (N is the number of
observations).

• 'ppw': Pre- and postwindowing. Used in the Yule-Walker approach.

• 'prw': Prewindowing. Missing past values are replaced with zeros so
that the summation in the criteria can start at time equal to zero.

opt

Estimation options.

1-14

ar

opt is an options set that specifies the following:

• data offsets

• covariance handling

• estimation approach

• estimation window

Use arOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ts’

Positive scalar that specifies the sample time. Use when you specify Y
as double vector rather than an IDDATA object.

’IntegrateNoise’

Boolean value that specifies whether the noise source contains an

integrator or not. Use it to create "ARI" structure models: Ay
e

z

 ()1 1

Default: false

Output
Arguments

m

An idpoly model.

ref1

An 2–by-2 array. The first row stores the reflection coefficients, and
the second row stores the corresponding loss function values. The first

1-15

ar

column of refl is the zeroth-order model, and the (2,1) element of refl
is the norm of the time series itself.

Examples Given a sinusoidal signal with noise, compare the spectral estimates of
Burg’s method with those found from the forward-backward approach
and no-windowing method on a Bode plot.

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)

Estimate an ARI model.

load iddata9 z9
Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y, 4, 'ls', 'Ts', Ts, 'IntegrateNoise', true)
compare(y,model,5) % 5 step ahead prediction

Use option set to choose 'ls' estimation approach and to specify that
covariance matrix should not be estimated.

y = rand(100,1);
opt = arOptions('Approach', 'ls', 'EstCovar', false);
model = ar(y, N, opt);

Algorithms The AR model structure is given by the following equation:

A q y t e t() () ()=

AR model parameters are estimated using variants of the least-squares
method. The following table summarizes the common names for

1-16

ar

methods with a specific combination of approach and window argument
values.

Method Approach and Windowing

Modified Covariance Method (Default) Forward-backward
approach and no windowing.

Correlation Method Yule-Walker approach, which
corresponds to least squares plus
pre- and postwindowing.

Covariance Method Least squares approach with no
windowing. arx uses this routine.

References Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice
Hall, Englewood Cliffs, 1987, Chapter 8.

See Also arOptions | idpoly | arx | etfe | ivar | pem | spa |
forecast

1-17

armax

Purpose Estimate parameters of ARMAX model using time-domain data

Syntax sys = armax(data,[na nb nc nk])
sys = armax(data,[na nb nc nk],Name,Value)
sys = armax(data,init_sys)
sys = armax(data, ___ ,opt)

Description
Note armax supports only time-domain data. For frequency-domain
data, use oe.

sys = armax(data,[na nb nc nk]) returns an idpoly model, sys,
with estimated parameters and covariance (parameter uncertainties).
Estimates the parameters using the prediction-error method and
specified polynomial orders.

sys = armax(data,[na nb nc nk],Name,Value) returns an
idpoly model, sys, with additional options specified by one or more
Name,Value pair arguments.

sys = armax(data,init_sys) estimates a polynomial model using
the ARMAX structure polynomial model init_sys to configure the
initial parameterization.

sys = armax(data, ___ ,opt) specifies estimation options using the
option set opt.

Tips • Use the IntegrateNoise property to add integrators to the noise
source.

Input
Arguments

data

Estimation data.

Specify data as an iddata object containing the time-domain
input-output data.

You cannot use frequency-domain data for estimating ARMAX models.

1-18

armax

[na nb nc nk]

Polynomial orders.

[na nb nc nk] define the polynomial orders of an “ARMAX Model”
on page 1-22.

• na — Order of the polynomial A(q).

Specify na as an Ny-by-Ny matrix of nonnegative integers. Ny is the
number of outputs.

• nb — Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number
of outputs and Nu is the number of inputs.

• nc — Order of the polynomial C(q).

nc is a column vector of nonnegative integers of length Ny. Ny is the
number of outputs.

• nk — Input-output delay expressed as fixed leading zeros of the
B polynomial.

Specify nk as an Ny-by-Nu matrix of nonnegative integers. Ny is the
number of outputs and Nu is the number of inputs.

init_sys

Linear polynomial model that configures the initial parameterization
of sys.

init_sys must be an ARMAX model. You may obtain init_sys by
either performing an estimation using measured data, or by direct
construction.

Use the Structure property of init_sys to configure initial guesses
and constraints for A(q), B(q), and C(q).

To specify an initial guess for, say, the A(q) term of init_sys, set
init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the B(q) term of init_sys:

1-19

armax

• set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values

• set init_sys.Structure.b.Maximum to the maximum B(q) coefficient
values

• set init_sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation

You can similarly specify the initial guess and constraints for the other
polynomials.

If opt is not specified, and init_sys was created by estimation, then
the estimation options from init_sys.Report.OptionsUsed are used.

opt

Estimation options.

opt is an options set that specifies estimation options, including:

• estimation objective

• handling of initial conditions

• numerical search method to be used in estimation

Use armaxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.

1-20

armax

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

’ioDelay’

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs. Useful as a replacement for the nk order, you can factor out
max(nk-1,0) lags as the ioDelay value.

Default: 0 for all input/output pairs

’IntegrateNoise’

Logical vector specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the model:

A q y t B q
C q

u t nk
q

e t() () ()
()

() ()
 1 1

Where,
1

1 1 q
is the integrator in the noise channel, e(t).

1-21

armax

Use IntegrateNoise to create an ARIMA model.

For example,

load iddata9 z9;
z9.y = cumsum(z9.y); %integrated data
sys = armax(z9,[4 1],'IntegrateNoise',true);
compare(z9,sys,10) %10-step ahead prediction

Default: false(Ny,1) (Ny is the number of outputs.)

Output
Arguments

sys

Identified ARMAX structure polynomial model.

sys is a discrete-time idpoly model, which encapsulates the estimated
A, B and C polynomials and the parameter covariance information.

Definitions ARMAX Model

The ARMAX model structure is

y t a y t a y t n

b u t n b u t n n
n a

k n k b

a

b

() () ()

() (

+ − + + − =

− + + − − +
1

1

1

1

))

() () ()

+

− + + − + c e t c e t n e tn cc1 1

A more compact way to write the difference equation is

A q y t B q u t n C q e tk() () () () () ()= − +

where

• y t()— Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nc — Number of C coefficients.

1-22

armax

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system.

• y t y t na() ()− −1 — Previous outputs on which the current output
depends.

• u t n u t n nk k b() ()− − − + 1 — Previous and delayed inputs on which
the current output depends.

• e t e t nc() ()− −1 — White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and
nk is the delay. q is the delay operator. Specifically,

A q a q a qn
n

a
a() = + + +− −1 1

1

B q b b q b qn
n

b
b() = + + +− − +

1 2
1 1

C q c q c qn
n

c
c() = + + +− −1 1

1

If data is a time series, which has no input channels and one output
channel, then armax calculates an ARMA model for the time series

A q y t e t() () ()=

In this case

orders = [na nc]

ARIMAX Model

An ARIMAX model structure is similar to ARMAX, except that it
contains an integrator in the noise source e(t):

1-23

armax

A q y t B q u t nk
q

e t() () () ()
()

()

1

1 1

If there are no inputs, this reduces to an ARIMA model:

A q y t
q

e t() ()
()

()

1

1 1

Examples Specifying Estimation Options

Estimate an ARMAX model from measured data and specify the
estimation options.

Estimate an ARMAX model with simulation focus, using 'lm' as the
search method and maximum number of search iterations set to 10.

load twotankdata
z = iddata(y,u,0.2);
opt = armaxOptions;
opt.Focus = 'simulation';
opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 10;
opt.Display = 'on';
sys = armax(z, [2 2 2 1], opt)

The termination conditions for measured component of the model shown
in the progress viewer is that the maximum number of iterations were
reached. To improve results, re-estimate the model using a greater
value for MaxIter, or we can continue iterations on the previously
estimated model as follows:

sys2 = armax(z, sys);

compare(z, sys, sys2)

where sys2 refines the parameters of sys to improve the fit to data.

1-24

armax

Estimate an ARIMA Model

Estimate an ARIMA Model from measured data.

Estimate a 4th order ARIMA model for univariate time series data.

load iddata9
z9.y = cumsum(z9.y); % integrated data
model = armax(z9, [4 1], 'IntegrateNoise', true);
compare(z9, model, 10) % 10-step ahead prediction

Estimate ARMAX Models Iteratively

Estimate ARMAX models of varying orders iteratively from measured
data.

Estimate ARMAX models of orders varying between 1 and 4 for dryer
data

load dryer2
z = iddata(y2,u2,0.08,'Tstart',0);
na = 2:4; nc = 1:2; nk = 0:2;
models = cell(1,18);
ct = 1;
for i = 1:3
na_ = na(i);
nb_ = na_;
for j = 1:2
nc_ = nc(j);
for k = 1:3
nk_ = nk(k);
models{ct} = armax(z, [na_, nb_, nc_, nk_]);
ct = ct+1;

end
end

end

1-25

armax

Stack the estimated models and compare their simulated responses
to estimation data z.

models = stack(1,models{:});
compare(z,models)

Algorithms An iterative search algorithm minimizes a robustified quadratic
prediction error criterion. The iterations are terminated either when
the maximum number of iterations is reached, or when the expected
improvement is less than the specified tolerance, or when a lower value
of the criterion cannot be found. You can get information about the
stopping criteria using sys.Report.Termination.

Use the armaxOptions option set to create and configure options
affecting the estimation results. In particular, set the search algorithm
attributes, such as MaxIter and Tolerance, using the 'SearchOption'
property.

When you do not specify initial parameter values for the iterative
search as an initial model, they are constructed in a special four-stage
LS-IV algorithm.

The cutoff value for the robustification is based on the
Advanced.ErrorThreshold estimation option and on the estimated
standard deviation of the residuals from the initial parameter
estimate. It is not recalculated during the minimization. By default,
no robustification is performed; the default value of ErrorThreshold
option is 0.

To ensure that only models corresponding to stable predictors are tested,
the algorithm performs a stability test of the predictor. Generally, both

C q() and F q() (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the
estimation option 'Display' is 'On' or 'Full'. With 'Display'
='Full', both the current and the previous parameter estimates are
displayed in column-vector form, listing parameters in alphabetical
order. Also, the values of the criterion function (cost) are given and the

1-26

armax

Gauss-Newton vector and its norm are also displayed. With 'Display'
= 'On' only the criterion values are displayed.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999. See chapter about computing the
estimate.

Alternatives armax does not support continuous-time model estimation. Use tfest
to estimate a continuous-time transfer function model, or ssest to
estimate a continuous-time state-space model.

See Also armaxOptions | arx | bj | oe | polyest | ssest | tfest |
idpoly | iddata | idfrd | forecast

1-27

armaxOptions

Purpose Option set for armax

Syntax opt = armaxOptions
opt = armaxOptions(Name,Value)

Description opt = armaxOptions creates the default options set for armax.

opt = armaxOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial conditions are set to zero.

• 'estimate' — The initial conditions are treated as independent
estimation parameters.

• 'backcast' — The initial conditions are estimated using the best
least squares fit.

• 'auto' — The software chooses the method to handle initial
conditions based on the estimation data.

Default: 'auto'

’Focus’

1-28

armaxOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes the one-step-ahead prediction.
This approach typically favors fitting small time intervals (higher
frequency range). From a statistical-variance point of view, this
weighting function is optimal. However, this method neglects the
approximation aspects (bias) of the fit. Use 'stability' when you
want to ensure a stable model.

• 'stability' — Same as 'prediction', but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

1-29

armaxOptions

- A single-input-single-output (SISO) linear system

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. You receive an
estimation result that is the same as if you had first prefiltered
using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same length
as the frequency vector of the data set, Data.Frequency. Each input
and output response in the data is multiplied by the corresponding
weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

1-30

armaxOptions

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

1-31

armaxOptions

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular
values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). This value is increased by the
factor LMStep each time the search fails to find a lower value of
the criterion in less than 5 bisections. This value is decreased by
the factor 2*LMStep each time a search is successful without any
bisections.

• 'lm' — Uses the Levenberg-Marquardt method so that the next
parameter value is -pinv(H+d*I)*grad from the previous one. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a
number that is increased until a lower value of the criterion is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox™ software. You must have Optimization Toolbox installed
to use this option. This search method can handle only the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — The algorithm chooses one of the preceding options.
The descent direction is calculated using 'gn', 'gna', 'lm', and
'grad' successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-32

armaxOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-33

armaxOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-34

armaxOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-35

armaxOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [2].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial condition.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-36

armaxOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
conditions.

- yp,e is the predicted output of a model estimated using estimated
initial conditions.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for armax.

Examples Create Default Options Set for ARMAX Estimation

opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an options set for armax using the 'stability' for Focus. Set
the Display to 'on'.

opt = armaxOptions('Focus','stability','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = armaxOptions;
opt.Focus = 'stability';
opt.Display = 'on';

References [1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

1-37

armaxOptions

See Also armax | idfilt

1-38

arOptions

Purpose Option set for ar

Syntax opt = arOptions
opt = arOptions(Name,Value)

Description opt = arOptions creates the default options set for ar.

opt = arOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Approach’

Technique used for AR model estimation.

Approach requires one of the following strings:

• 'fb' — Forward-backward approach.

• 'ls' — Least-squares method.

• 'yw' — Yule-Walker approach.

• 'burg' — Burg’s method.

• 'gl' — Geometric lattice method.

Default: 'fb'

’Window’

Data windowing technique.

Window determines how the data outside the measured time interval
(past and future values) is handled.

1-39

arOptions

Window requires one of the following strings:

• 'now' — No windowing.

• 'prw' — Pre-windowing.

• 'pow' — Post-windowing.

• 'ppw' — Pre- and post-windowing.

This option is ignored when you use the Yule-Walker approach.

Default: 'now'

’DataOffset’

Data offset level that is removed before estimation of parameters.

Specify DataOffset as a double scalar. For multiexperiment data,
specify DataOffset as a vector of length Ne, where Ne is the number
of experiments. Each entry of the vector is subtracted from the
corresponding data.

Default: [] (no offsets)

’MaxSize’

Specifies the maximum number of elements in a segment when
input/output data is split into segments.

If larger matrices are needed, the software uses loops for calculations.
Use this option to manage the trade-off between memory management
and program execution speed. The original data matrix must be smaller
than the matrix specified by MaxSize.

MaxSize must be a positive integer.

Default: 250000

Output
Arguments

opt

Option set containing the specified options for ar.

1-40

arOptions

Examples Create Default Options Set for AR Estimation

opt = arOptions;

Specify Options for AR Estimation

Create an options set for ar using the least squares algorithm for
estimation. Set Window to 'ppw'.

opt = arOptions('Approach','ls','Window','ppw');

Alternatively, use dot notation to set the values of opt.

opt = arOptions;
opt.Approach = 'ls';
opt.Window = 'ppw';

See Also ar

1-41

arx

Purpose Estimate parameters of ARX or AR model using least squares

Syntax sys = arx(data,[na nb nk])
sys = arx(data,[na nb nk],Name,Value)
sys = arx(data,[na nb nk], ___ ,opt)

Description
Note arx does not support continuous-time estimations. Use tfest
instead.

sys = arx(data,[na nb nk]) returns an ARX structure polynomial
model, sys, with estimated parameters and covariances (parameter
uncertainties) using the least-squares method and specified orders.

sys = arx(data,[na nb nk],Name,Value) estimates a polynomial
model with additional options specified by one or more Name,Value
pair arguments.

sys = arx(data,[na nb nk], ___ ,opt) specifies estimation options
that configure the estimation objective, initial conditions and handle
input/output data offsets.

Input
Arguments

data

Estimation data.

Specify data as an iddata object, an frd object, or an idfrd
frequency-response-data object.

[na nb nk]

Polynomial orders.

[na nb nk] define the polynomial orders of an ARX model.

• na — Order of the polynomial A(q).

Specify na as an Ny-by-Ny matrix of nonnegative integers. Ny is the
number of outputs.

1-42

arx

• nb — Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number
of outputs and Nu is the number of inputs.

• nk — Input-output delay expressed as fixed leading zeros of the
B polynomial.

Specify nk as an Ny-by-Nu matrix of nonnegative integers. Ny is the
number of outputs and Nu is the number of inputs.

opt

Estimation options.

opt is an options set that specifies estimation options, including:

• input/output data offsets

• output weight

Use arxOptions to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

1-43

arx

Default: 0 for all input channels

’ioDelay’

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs. Useful as a replacement for the nk order, you can factor out
max(nk-1,0) lags as the ioDelay value.

Default: 0 for all input/output pairs

’IntegrateNoise’

Logical vector specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the ARIX model:

A q y t B q u t nk
q

e t() () () () ()

1

1 1

Where,
1

1 1 q
is the integrator in the noise channel, e(t).

Default: false(Ny,1) (Ny is the number of outputs.)

Output
Arguments

sys

Identified ARX structure polynomial model.

1-44

arx

sys is a discrete-time idpoly model, which encapsulates the estimated
A and B polynomials and the parameter covariance information.

Definitions ARX structure

arx estimates the parameters of the ARX model structure:

y t a y t a y t na

b u t nk b u t nb nk
na

nb

() () ... ()
() ... ()
+ − + + − =
− + + − − +

1

1

1
1 ++ e t()

The parameters na and nb are the orders of the ARX model, and nk
is the delay.

• y t()— Output at time t .

• na — Number of poles.

• nb — Number of zeroes plus 1.

• nk — Number of input samples that occur before the input affects
the output, also called the dead time in the system.

• y t y t na() ()− −1 — Previous outputs on which the current output
depends.

• u t n u t n nk k b() ()− − − + 1 — Previous and delayed inputs on which
the current output depends.

• e t e t nc() ()− −1 — White-noise disturbance value.

A more compact way to write the difference equation is

A q y t B q u t n e tk() () () () ()= − +

q is the delay operator. Specifically,

A q a q a qn
n

a
a() = + + +− −1 1

1

1-45

arx

B q b b q b qn
n

b
b() = + + +− − +

1 2
1 1

Time Series Models

For time-series data that contains no inputs, one output and orders =
na, the model has AR structure of order na.

The AR model structure is

A q y t e t() () ()=

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith
element corresponds to the order and delay associated with the ith
input.

y t A y t A y t A y t na

B u t B u t
na() () () ()

() (
+ − + − + + − =

+
1 2

0 1

1 2

 −− + + − +1) () () B u t nb e tnb

Multi-Output Models

For models with multiple inputs and multiple outputs, na, nb, and nk
contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction
error covariance matrix, or the norm

e t e tT

t

N
() ()

=
∑

1

To transform this to an arbitrary quadratic norm using a weighting
matrix Lambda

e t e tT

t

N
() ()Λ−

=
∑ 1

1

use the syntax

1-46

arx

opt = arxOptions('OutputWeight', inv(lambda))
m = arx(data, orders, opt)

Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured
signals are never required in the predictors. Therefore, there is no need
to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by
initial conditions that support circular convolution.

Set the InitialCondition estimation option (see arxOptions) to one
the following values:

• 'zero' — No adjustment.

• 'estimate'— Perform adjustment to the data by initial conditions
that support circular convolution.

• 'auto' — Automatically choose between 'zero' and 'estimate'
based on the data.

Examples This example generates input data based on a specified ARX model, and
then uses this data to estimate an ARX model.

A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(m0, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);

Algorithms QR factorization solves the overdetermined set of linear equations that
constitutes the least-squares estimation problem.

The regression matrix is formed so that only measured quantities are
used (no fill-out with zeros). When the regression matrix is larger

1-47

arx

than MaxSize, data is segmented and QR factorization is performed
iteratively on these data segments.

See Also arxOptions | arxstruc | ar | armax | bj | iv4 | n4sid | oe | nlarx

How To • “Using Linear Model for Nonlinear ARX Estimation”

1-48

arxdata

Purpose ARX parameters from multiple-output models with variance
information

Note arxdata will be removed in a future release. Use polydata
instead.

Syntax [A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Arguments m
An idarx model object.

Also accepts single-output idpoly models with an underlying
ARX structure with orders nc=nd=nf=0.

Description [A,B] = arxdata(m) returns A and B as 3-D arrays.

Suppose ny is the number of outputs (the dimension of the vector y(t))
and nu is the number of inputs.

A is an ny-by-ny-by-(na+1) array such that

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

where k=0,1,...,na.

B is an ny-by-nu-by-(nb+1) array with

B(:,:,k+1) = Bk

A(0) is always the identity matrix. The leading entries in B equal to
zero, which means there are no delays in the model.

1-49

arxdata

Note For a time series, B = [].

[A,B,dA,dB] = arxdata(m) returns A and B matrices, and dA and dB
as the estimated standard deviations of A and B, respectively.

Tips A and B are 2-D or 3-D arrays and are returned in the standard
multivariable ARX format (see idarx), describing the model.

y t A y t A y t A y t na

B u t B u t
na() () () ()

() (
+ − + − + + − =

+
1 2

0 1

1 2

 −− + + − +1) () () B u t nb e tnb

where Ak and Bk matrices have dimensions ny-by-ny and ny-by-nu,
respectively. ny is the number of outputs (the dimension of the vector
y(t)) and nu is the number of inputs.

See Also idarx | idpoly

1-50

arxOptions

Purpose Option set for ar

Syntax opt = arxOptions
opt = arxOptions(Name,Value)

Description opt = arxOptions creates the default options set for arx.

opt = arxOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial conditions are set to zero.

• 'estimate' — The initial conditions are treated as independent
estimation parameters.

• 'backcast' — The initial conditions are estimated using the best
least squares fit.

• 'auto' — The software chooses the method to handle initial
conditions based on the estimation data.

Default: 'auto'

’Focus’

1-51

arxOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes one-step-ahead prediction, which
typically favors fitting small time intervals (higher frequency range).
From a statistical-variance point of view, this weighting function is
optimal. However, this method neglects the approximation aspects
(bias) of the fit. Use 'stability'when you want to ensure a stable
model.

• 'stability' — Same as 'prediction', but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

1-52

arxOptions

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

1-53

arxOptions

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Weight of prediction errors in multi-output estimation.

Specify OutputWeight as a positive semidefinite, symmetric matrix
(W). The software minimizes the trace of the weighted prediction error

1-54

arxOptions

matrix trace(E'*E*W). E is the matrix of prediction errors, with one
column for each output, and W is the positive semidefinite, symmetric
matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-input, multiple-output
models, or the reliability of corresponding data.

This option is relevant only for multi-output models.

Default: []

’Advanced’

Advanced is a structure with the following fields:

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

Output
Arguments

opt

Option set containing the specified options for arx.

1-55

arxOptions

Examples Create Default Options Set for ARX Estimation

opt = arxOptions;

Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation.
Set Display to 'on'.

opt = arxOptions('InitialCondition','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = arxOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

See Also arx | idfilt

1-56

arxstruc

Purpose Compute and compare loss functions for single-output ARX models

Syntax V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)

Arguments ze
Estimation data set can be iddata or idfrd object.

zv
Validation data set can be iddata or idfrd object.

NN
Matrix defines the number of different ARX-model structures.
Each row of NN is of the form:

nn = [na nb nk]

maxsize
Specifies the maximum number of elements in a segment when
input-output data is split into segments.

If larger matrices are needed, the software will use loops for
calculations. Use this option to manage the trade-off between
memory management and program execution speed. The original
data matrix must be smaller than the matrix specified by maxsize.

maxsize must be a positive integer.

Description
Note Use arxstruc for single-output systems only. arxstruc supports
both single-input and multiple-input systems.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions
in its first row. The remaining rows of V contain the transpose of NN, so
that the orders and delays are given just below the corresponding loss
functions. The last column of V contains the number of data points in ze.

1-57

arxstruc

V = arxstruc(ze,zv,NN,maxsize) uses the additional specification
of the maximum data size.

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices.

The output argument V is best analyzed using selstruc. The selection
of a suitable model structure based on the information in v is normally
done using selstruc.

Tips Each of ze and zv is an iddata object containing output-input data.
Frequency-domain data and idfrd objects are also supported. Models
for each of the model structures defined by NN are estimated using the
data set ze. The loss functions (normalized sum of squared prediction
errors) are then computed for these models when applied to the
validation data set zv. The data sets ze and zv need not be of equal size.
They could, however, be the same sets, in which case the computation
is faster.

Examples This example uses the simulation data from a second-order idpoly
model with additive noise. The data is split into two parts, where one
part is the estimation data and the other is the validation data. You
select the best model by comparing the output of models with orders
ranging between 1 and 5 with the validating data. All models have an
input-to-output delay of 1.

% Create an ARX model for generaing data:
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
% Generate a random input signal:
u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));
% Simulate the output signal from the model m0:
y = sim(m0, [u e]);
z = [y,u]; % analysis data
NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);

1-58

arxstruc

m = arx(z,nn);

arx | idpoly | ivstruc | selstruc | struc

1-59

bandwidth

Purpose Frequency response bandwidth

Syntax fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description fb = bandwidth(sys) computes the bandwidth fb of the SISO dynamic
system model sys, defined as the first frequency where the gain drops
below 70.79 percent (-3 dB) of its DC value. The frequency fb is
expressed in rad/TimeUnit, where TimeUnit is the time units of the
input dynamic system, specified in the TimeUnit property of sys.

For FRD models, bandwidth uses the first frequency point to
approximate the DC gain.

fb = bandwidth(sys,dbdrop) further specifies the critical gain drop
in dB. The default value is -3 dB, or a 70.79 percent drop.

If sys is an S1-by...-by-Sp array of models, bandwidth returns an array
of the same size such that

fb(j1,...,jp) = bandwidth(sys(:,:,j1,...,jp))

See Also dcgain | issiso

1-60

bj

Purpose Estimate Box-Jenkins polynomial model using time domain data

Syntax sys = bj(data, [nb nc nd nf nk])
sys = bj(data,[nb nc nd nf nk], Name,Value)
sys = bj(data, init_sys)
sys = bj(data, ___ , opt)

Description sys = bj(data, [nb nc nd nf nk]) estimates a Box-Jenkins
polynomial model, sys, using the time domain data, data. [nb nc nd
nf nk] define the orders of the polynomials used for estimation.

sys = bj(data,[nb nc nd nf nk], Name,Value) estimates a
polynomial model with additional options specified by one or more
Name,Value pair arguments.

sys = bj(data, init_sys) estimates a Box-Jenkins polynomial
using the polynomial model init_sys to configure the initial
parameterization of sys.

sys = bj(data, ___ , opt) estimates a Box-Jenkins polynomial using
the option set, opt, to specify estimation behavior.

Input
Arguments

data

Estimation data.

data is an iddata object containing the input and output signal values.

[nb nc nd nf nk]

A vector of matrices containing the orders and delays of the Box-Jenkins
model. Matrixes must contain nonnegative integers.

• nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)

• nc is the order of the C polynomial plus 1 (Ny-by–1 matrix)

• nd is the order of the D polynomial plus 1 (Ny-by-1 matrix)

• nf is the order of the F polynomial plus 1 (Ny-by-Nu matrix)

1-61

bj

• nk is the input delay (in number of samples, Ny-by-Nu matrix) where
Nu is the number of inputs and Ny is the number of outputs.

opt

Estimation options.

opt is an options set that configures, among others, the following:

• estimation objective

• initial conditions

• numerical search method to be used in estimation

Use bjOptions to create the options set.

init_sys

Polynomial model that configures the initial parameterization of sys.

init_sys must be an idpoly model with the Box-Jenkins structure
that has only B, C, D and F polynomials active. bj uses the parameters
and constraints defined in init_sys as the initial guess for estimating
sys.

Use the Structure property of init_sys to configure initial guesses
and constraints for B(q), F(q), C(q) and D(q).

To specify an initial guess for, say, the C(q) term of init_sys, set
init_sys.Structure.c.Value as the initial guess.

To specify constraints for, say, the B(q) term of init_sys:

• set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values

• set init_sys.Structure.b.Maximum to the maximum B(q) coefficient
values

• set init_sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation

1-62

bj

You can similarly specify the initial guess and constraints for the other
polynomials.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in integer multiples of
the sampling period Ts. For example, InputDelay = 3 means a delay
of three sampling periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

’ioDelay’

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

Specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can also
set ioDelay to a scalar value to apply the same delay to all input/output
pairs.

Default: 0 for all input/output pairs

1-63

bj

’IntegrateNoise’

Logical specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the model:

y t
B q
F q

u t nk
C q
D q

e t

q
()

()
()

()
()
()

()

 1 1

Where,
1

1 1 q
is the integrator in the noise channel,e(t).

Default: false(Ny,1)(Ny is the number of outputs)

Output
Arguments

sys

Identified polynomial model of Box-Jenkins structure.

sys is a discrete-time idpoly model which encapsulates the identified
polynomial model.

Definitions Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

y t
B q
F q

u t nk
C q
D q

e ti

i
i i

i

nu
()

()
()

()
()

()= −() +
=
∑

1

where nu is the number of input channels.

The orders of Box-Jenkins model are defined as follows:

1-64

bj

nb B q b b q b q

nc C q c q c

nb
nb

n

:

:

() ...

() ...

= + + +

= + + +

− − +

−
1 2

1 1

1
11 cc

nc

nd
nd

q

nd D q d q d q

nf F q f q

−

− −

−

= + + +

= + +

:

:

() ...

() ...

1

1

1
1

1
1 ++ −f qnf

nf

Examples Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins
model from measured data.

load iddata1 z1;
nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
sys = bj(z1,[nb nc nd nf nk])

sys is a discrete-time idpoly model with estimated coefficients. The
order of sys is as described by nb, nc, nd, nf, and nk.

Use getpvec to obtain the estimated parameters and getcov to obtain
the covariance associated with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins
model from measured data.

load iddata8;
nb = [2 1 1];
nc = 1;
nd = 1;
nf = [2 1 2];
nk = [5 10 15];
sys = bj(z8,[nb nc nd nf nk]);

1-65

bj

sys estimates the parameters of a model with three inputs and one
output. Each of the inputs has a delay associated with it.

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins
model while configuring some estimation options.

Generate estimation data.

B = [0 1 0.5];
C = [1 -1 0.2];
D = [1 1.5 0.7];
F = [1 -1.5 0.7];
sys0 = idpoly(1,B,C,D,F,0.1);
e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sys0,[u e]);
data = [y u];

data is a single-input, single-output data set created by simulating
a known model.

Estimate initial Box-Jenkins model.

nb = 2;
nc = 2;
nd = 2;
nf = 2;
nk = 1;
init_sys = bj(data,[2 2 2 2 1]);

Create an estimation option set to refine the parameters of the
estimated model.

opt = bjOptions;
opt.Display = 'on';
opt.SearchOption.MaxIter = 50;

1-66

bj

opt is an estimation option set that configures the estimation to iterate
50 times at most and display the estimation progress.

Reestimate the model parameters using the estimation option set.

sys = bj(data,init_sys,opt)

sys is estimated using init_sys for the initial parameterization for the
polynomial coefficients.

To view the estimation result, enter sys.Report at the MATLAB
command prompt.

Estimate MIMO Box-Jenkins Model

Estimate a multi-input, multi-output Box-Jenkins model from
estimated data.

Load measured data.

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

data contains the measured data for two inputs and two outputs.

Estimate the model.

nb = [2 2; 3 4];
nc = [2;2];
nd = [2;2];
nf = [1 0; 2 2];
nk = [1 1; 0 0];
sys = bj(data, [nb nc nd nf nk])

The polynomial order coefficients contain one row for each output.

sys is a discrete-time idpoly model with two inputs and two outputs.

Alternatives To estimate a continuous-time model, use:

1-67

bj

• tfest — returns a transfer function model

• ssest — returns a state-space model

• bj to first estimate a discrete-time model and convert it a
continuous-time model using d2c.

References [1] Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999.

See Also bjoptions | tfest | arx | armax | iv4 | ssest | oe |
polyest | idpoly | iddata | d2c | forecast | sim | compare

1-68

bjOptions

Purpose Option set for bj

Syntax opt = bjOptions
opt = bjOptions(Name,Value)

Description opt = bjOptions creates the default options set for bj.

opt = bjOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial conditions are set to zero.

• 'estimate' — The initial conditions are treated as independent
estimation parameters.

• 'backcast' — The initial conditions are estimated using the best
least squares fit.

• 'auto' — The software chooses the method to handle initial
conditions based on the estimation data.

Default: 'auto'

’Focus’

1-69

bjOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes one-step-ahead prediction, which
typically favors fitting small time intervals (higher frequency range).
From a statistical-variance point of view, this weighting function is
optimal. However, this method neglects the approximation aspects
(bias) of the fit. Use 'stability'when you want to ensure a stable
model.

• 'stability' — Same as 'prediction', but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

1-70

bjOptions

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

1-71

bjOptions

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

1-72

bjOptions

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular
values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). This value is increased by the
factor LMStep each time the search fails to find a lower value of
the criterion in less than 5 bisections. This value is decreased by
the factor 2*LMStep each time a search is successful without any
bisections.

• 'lm' — Uses the Levenberg-Marquardt method so that the next
parameter value is -pinv(H+d*I)*grad from the previous one. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a
number that is increased until a lower value of the criterion is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox software. You must have Optimization Toolbox installed
to use this option. This search method can handle only the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — The algorithm chooses one of the preceding options.
The descent direction is calculated using 'gn', 'gna', 'lm', and
'grad' successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-73

bjOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-74

bjOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-75

bjOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-76

bjOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [2].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial condition.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-77

bjOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for bj.

Examples Create Default Options Set for Box-Jenkins Estimation

opt = bjOptions;

Specify Options for Box-Jenkins Estimation

Create an options set for bj using zero initial conditions for estimation.
Set Display to 'on'.

opt = bjOptions('InitialCondition','zero','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

References [1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

1-78

bjOptions

See Also bj | idfilt

1-79

blkdiag

Purpose Block-diagonal concatenation of models

Syntax sys = blkdiag(sys1,sys2,...,sysN)

Description sys = blkdiag(sys1,sys2,...,sysN) produces the aggregate system

sys
sys

sysN

1 0 0
0 2

0
0 0

..
. :

: . .
..

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

blkdiag is equivalent to append.

Examples The commands

sys1 = tf(1,[1 0]);
sys2 = ss(1,2,3,4);
sys = blkdiag(sys1,10,sys2)

produce the state-space model

a =
x1 x2

x1 0 0
x2 0 1

b =
u1 u2 u3

x1 1 0 0
x2 0 0 2

c =
x1 x2

y1 1 0
y2 0 0
y3 0 3

1-80

blkdiag

d =
u1 u2 u3

y1 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time model.

See Also append | series | parallel | feedback

1-81

bode

Purpose Bode plot of frequency response, magnitude and phase of frequency
response

Syntax bode(sys)
bode(sys1,...,sysN)
bode(sys1,PlotStyle1,...,sysN,PlotStyleN)
bode(...,w)
[mag,phase] = bode(sys,w)
[mag,phase,wout] = bode(sys)
[mag,phase,wout,sdmag,sdphase] = bode(sys)

Description bode(sys) creates a Bode plot of the frequency response of a dynamic
system model sys. The plot displays the magnitude (in dB) and phase
(in degrees) of the system response as a function of frequency.

When sys is a multi-input, multi-output (MIMO) model, bode produces
an array of Bode plots, each plot showing the frequency response of
one I/O pair.

bode automatically determines the plot frequency range based on
system dynamics.

1-82

bode

bode(sys1,...,sysN) plots the frequency response of multiple dynamic
systems in a single figure. All systems must have the same number of
inputs and outputs.

bode(sys1,PlotStyle1,...,sysN,PlotStyleN) plots system
responses using the color, linestyle, and markers specified by the
PlotStyle strings.

bode(...,w) plots system responses at frequencies determined by w.

• If w is a cell array {wmin,wmax}, bode(sys,w) plots the system
response at frequency values in the range {wmin,wmax}.

• If w is a vector of frequencies, bode(sys,w) plots the system response
at each of the frequencies specified in w.

[mag,phase] = bode(sys,w) returns magnitudes mag in absolute
units and phase values phase in degrees. The response values in mag
and phase correspond to the frequencies specified by w as follows:

• If w is a cell array {wmin,wmax}, [mag,phase] = bode(sys,w)
returns the system response at frequency values in the range
{wmin,wmax}.

• If w is a vector of frequencies, [mag,phase] = bode(sys,w) returns
the system response at each of the frequencies specified in w.

[mag,phase,wout] = bode(sys) returns magnitudes, phase values,
and frequency values wout corresponding to bode(sys).

[mag,phase,wout,sdmag,sdphase] = bode(sys) additionally returns
the estimated standard deviation of the magnitude and phase values
when sys is an identified model and [] otherwise.

Input
Arguments

sys

Dynamic system model, such as a Numeric LTI model, or an array of
such models.

PlotStyle

1-83

bode

Line style, marker, and color of both the line and marker, specified as
a one-, two-, or three-part string enclosed in single quotes (' '). The
elements of the string can appear in any order. The string can specify
only the line style, the marker, or the color.

For more information about configuring the PlotStyle string, see
“Colors, Line Styles, and Markers” in the MATLAB documentation.

w

Input frequency values, specified as a row vector or a two-element cell
array.

Possible values of w:

• Two-element cell array {wmin,wmax}, where wmin is the minimum
frequency value and wmax is the maximum frequency value.

• Row vector of frequency values.

For example, use logspace to generate a row vector with
logarithmically-spaced frequency values.

Specify frequency values in radians per TimeUnit, where TimeUnit is
the time units of the input dynamic system, specified in the TimeUnit
property of sys.

Output
Arguments

mag

Bode magnitude of the system response in absolute units, returned as a
3-D array with dimensions (number of outputs) × (number of inputs)
× (number of frequency points).

• For a single-input, single-output (SISO) sys, mag(1,1,k) gives the
magnitude of the response at the kth frequency.

• For MIMO systems, mag(i,j,k) gives the magnitude of the response
from the jth input to the ith output.

You can convert the magnitude from absolute units to decibels using:

magdb = 20*log10(mag)

1-84

bode

phase

Phase of the system response in degrees, returned as a 3-D array with
dimensions are (number of outputs) × (number of inputs) × (number
of frequency points).

• For SISO sys, phase(1,1,k) gives the phase of the response at the
kth frequency.

• For MIMO systems, phase(i,j,k) gives the phase of the response
from the jth input to the ith output.

wout

Response frequencies, returned as a row vector of frequency points.
Frequency values are in radians per TimeUnit, where TimeUnit is the
value of the TimeUnit property of sys.

sdmag

Estimated standard deviation of the magnitude. sdmag has the same
dimensions as mag.

If sys is not an identified LTI model, sdmag is [].

sdphase

Estimated standard deviation of the phase. sdphase has the same
dimensions as phase.

If sys is not an identified LTI model, sdphase is [].

Examples Bode Plot of Dynamic System

Create Bode plot of the dynamic system:

H s
s s

s s s
()

. .

.
= + +

+ +

2

4 3 2
0 1 7 5

0 12 9

H(s) is a continuous-time SISO system.

1-85

bode

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(H)

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

Create Bode plot over a specified frequency range. Use this approach
when you want to focus on the dynamics in a particular range of
frequencies.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
bode(H,{0.1,10})

The cell array {0.1,10} specifies the minimum and maximum
frequency values in the Bode plot.

1-86

bode

Alternatively, you can specify a vector of frequencies to use for
evaluating and plotting the frequency response.

w = logspace(-1,1,50);
bode(H,w)

logspace defines a logarithmically spaced frequency vector in the range
of 0.1-10 rad/s.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an
equivalent discretized system on the same Bode plot.

1 Create continuous-time and discrete-time dynamic systems.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

2 Create Bode plot that includes both systems.

1-87

bode

bode(H,Hd)

Bode Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode plot
using the PlotStyle input arguments.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
Hd = c2d(H,0.5,'zoh');

H and Hd are two different systems.

bode(H,'r',Hd,'b--')

The string 'r' specifies a solid red line for the response of H. The string
'b--' specifies a dashed blue line for the response of Hd.

1-88

bode

Obtain Magnitude and Phase Data

Compute the magnitude and phase of the frequency response of a
dynamic system.

H = tf([1 0.1 7.5],[1 0.12 9 0 0]);
[mag phase wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase
are both 1. The third dimension is the number of frequencies in wout.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified
from input/output data, to a non-parametric model identified using
the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;

1-89

bode

w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

sys_np is a non-parametric identified model. sys_p is a parametric
identified model.

2 Create a Bode plot that includes both systems.

bode(sys_np,sys_p,w);

Obtain Magnitude and Phase Standard Deviation Data of
Identified Model

Compute the standard deviation of the magnitude and phase of an
identified model. Use this data to create a 3σ plot of the response
uncertainty.

1 Identify a transfer function model based on data. Obtain the
standard deviation data for the magnitude and phase of the frequency
response.

1-90

bode

load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(0,10*pi,128);
[mag,ph,w,sdmag,sdphase] = bode(sys_p,w);

sys_p is an identified transfer function model.

sdmag and sdphase contain the standard deviation data for the
magnitude and phase of the frequency response, respectively.

2 Create a 3σ plot corresponding to the confidence region.

mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx(w,mag,'b',w,mag+3*sdmag,'k:',w,mag-3*sdmag,'k:');

Algorithms bode computes the frequency response using these steps:

1 Computes the zero-pole-gain (zpk) representation of the dynamic
system.

2 Evaluates the gain and phase of the frequency response based on the
zero, pole, and gain data for each input/output channel of the system.

1-91

bode

a For continuous-time systems, bode evaluates the frequency
response on the imaginary axis s = jω and considers only positive
frequencies.

b For discrete-time systems, bode evaluates the frequency response
on the unit circle. To facilitate interpretation, the command
parameterizes the upper half of the unit circle as

z e
T

j T
N

s

s

, ,0

where Ts is the sampling time. ωN is the Nyquist frequency. The
equivalent continuous-time frequency ω is then used as the x-axis

variable. Because H e j Ts() is periodic and has a period 2 ωN, bode
plots the response only up to the Nyquist frequency ωN. If you do
not specify a sampling time, bode uses Ts = 1.

Alternatives Use bodeplot when you need additional plot customization options.

See Also bodeplot | freqresp | nichols | nyquist | spectrum

How To • “Dynamic System Models”

1-92

bodemag

Purpose Bode magnitude response of LTI models

Syntax bodemag(sys)
bodemag(sys,{wmin,wmax})
bodemag(sys,w)
bodemag(sys1,sys2,...,sysN,w)
bodemag(sys1,'r',sys2,'y--',sys3,'gx')

Description bodemag(sys) plots the magnitude of the frequency response of the
dynamic system model sys (Bode plot without the phase diagram). The
frequency range and number of points are chosen automatically.

bodemag(sys,{wmin,wmax}) draws the magnitude plot for frequencies
between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time
units of the input dynamic system, specified in the TimeUnit property
of sys).

bodemag(sys,w) uses the user-supplied vector W of frequencies, in
rad/TimeUnit, at which the frequency response is to be evaluated.

bodemag(sys1,sys2,...,sysN,w) shows the frequency response
magnitude of several models sys1,sys2,...,sysN on a single plot. The
frequency vector w is optional. You can also specify a color, line style,
and marker for each model, as in
bodemag(sys1,'r',sys2,'y--',sys3,'gx')

See Also bode | ltiview

1-93

bodeoptions

Purpose Create list of Bode plot options

Syntax P = bodeoptions
P = bodeoptions('cstprefs')

Description P = bodeoptions returns a list of available options for Bode plots with
default values set. You can use these options to customize the Bode plot
appearance using the command line.

P = bodeoptions('cstprefs') initializes the plot options with the
options you selected in the Control System Toolbox Preferences Editor.
For more information about the editor, see “Toolbox Preferences Editor”
in the User’s Guide documentation.

The following table summarizes the Bode plot options.

Option Description

Title, XLabel, YLabel Label text and style

TickLabel Tick label style

Grid Show or hide the grid
Specified as one of the following strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes

Xlim, Ylim Axes limits

IOGrouping Grouping of input-output pairs
Specified as one of the following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels,
OutputLabels

Input and output label styles

InputVisible,
OutputVisible

Visibility of input and output channels

1-94

bodeoptions

Option Description

ConfidenceRegionNumberSDNumber of standard deviations to use to plotting the response
confidence region (identified models only).

Default: 1.

FreqUnits Frequency units, specified as one of the following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

1-95

bodeoptions

Option Description

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses frequency units
rad/TimeUnit relative to system time units specified in the
TimeUnit property. For multiple systems with different time
units, the units of the first system are used.

FreqScale Frequency scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'log'

MagUnits Magnitude units
Specified as one of the following strings: 'dB' | 'abs'
Default: 'dB'

MagScale Magnitude scale
Specified as one of the following strings: 'linear' | 'log'
Default: 'linear'

MagVisible Magnitude plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

MagLowerLimMode Enables a lower magnitude limit
Specified as one of the following strings: 'auto' | 'manual'
Default: 'auto'

MagLowerLim Specifies the lower magnitude limit

PhaseUnits Phase units
Specified as one of the following strings: 'deg' | 'rad'
Default: 'deg'

1-96

bodeoptions

Option Description

PhaseVisible Phase plot visibility
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

PhaseWrapping Enables phase wrapping
Specified as one of the following strings: 'on' | 'off'
Default: 'off'

PhaseMatching Enables phase matching
Specified as one of the following strings: 'on' | 'off'
Default: 'off'

PhaseMatchingFreq Frequency for matching phase

PhaseMatchingValue The value to which phase responses are matched closely

Examples In this example, set phase visibility and frequency units in the Bode
plot options.

P = bodeoptions; % Set phase visiblity to off and frequency units to Hz in options

P.PhaseVisible = 'off';

P.FreqUnits = 'Hz'; % Create plot with the options specified by P

h = bodeplot(tf(1,[1,1]),P);

The following plot is created, with the phase plot visibility turned off
and the frequency units in Hz.

1-97

bodeoptions

See Also bode | bodeplot | getoptions | setoptions | showConfidence

1-98

bodeplot

Purpose Plot Bode frequency response with additional plot customization options

Syntax h = bodeplot(sys)
bodeplot(sys)
bodeplot(sys1,sys2,...)
bodeplot(AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)

Description h = bodeplot(sys) plot the Bode magnitude and phase of the dynamic
system model sys and returns the plot handle h to the plot. You can use
this handle to customize the plot with the getoptions and setoptions
commands.

bodeplot(sys) draws the Bode plot of the model sys. The frequency
range and number of points are chosen automatically.

bodeplot(sys1,sys2,...) graphs the Bode response of multiple
models sys1,sys2,... on a single plot. You can specify a color, line style,
and marker for each model, as in

bodeplot(sys1,'r',sys2,'y--',sys3,'gx')

bodeplot(AX,...) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options
specified in plotoptions. Type

help bodeoptions

for a list of available plot options. See “Example 2” on page 1-100 for
an example of phase matching using the PhaseMatchingFreq and
PhaseMatchingValue options.

bodeplot(sys,w) draws the Bode plot for frequencies specified by w.
When w = {wmin,wmax}, the Bode plot is drawn for frequencies between
wmin and wmax (in rad/TimeUnit, where TimeUnit is the time units of
the input dynamic system, specified in the TimeUnit property of sys.).

1-99

bodeplot

When w is a user-supplied vector w of frequencies, in rad/TimeUnit, the
Bode response is drawn for the specified frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Use the plot handle to change options in a Bode plot.

sys = rss(5);
h = bodeplot(sys);
% Change units to Hz and make phase plot invisible
setoptions(h,'FreqUnits','Hz','PhaseVisible','off');

Example 2

The properties PhaseMatchingFreq and PhaseMatchingValue are
parameters you can use to specify the phase at a specified frequency.
For example, enter the following commands.

sys = tf(1,[1 1]);
h = bodeplot(sys) % This displays a Bode plot.

1-100

bodeplot

Use this code to match a phase of 750 degrees to 1 rad/s.

p = getoptions(h);

p.PhaseMatching = 'on';

p.PhaseMatchingFreq = 1;

p.PhaseMatchingValue = 750; % Set the phase to 750 degrees at 1

% rad/s.

setoptions(h,p); % Update the Bode plot.

1-101

bodeplot

The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s.
Setting the phase matching options so that at 1 rad/s the phase is near
750 degrees yields the second Bode plot. Note that, however, the phase
can only be -45 + N*360, where N is an integer, and so the plot is set to
the nearest allowable phase, namely 675 degrees (or 2*360 - 45 = 675).

Example 3

Compare the frequency responses of identified state-space models of
order 2 and 6 along with their 2 std confidence regions.

load iddata1
sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2
sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows
higher uncertainty in its frequency response, especially close to Nyquist
frequency as shown by the plot:

1-102

bodeplot

w = linspace(8,10*pi,256);
h = bodeplot(sys1,sys2,w);
setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD', 2);

Use the context menu by right-clicking Characteristics > Confidence
Region to turn on the confidence region characteristic.

Example 4

Compare the frequency response of a parametric model, identified
from input/output data, to a nonparametric model identified using
the same data.

1 Identify parametric and non-parametric models based on data.

load iddata2 z2;
w = linspace(0,10*pi,128);
sys_np = spa(z2,[],w);
sys_p = tfest(z2,2);

spa and tfest require System Identification Toolbox™ software.
sys_np is a non-parametric identified model. sys_p is a parametric
identified model.

2 Create a Bode plot that includes both systems.

opt = bodeoptions; opt.PhaseMatching = 'on';
bodeplot(sys_np,sys_p,w, opt);

See Also bode | bodeoptions | getoptions | setoptions | showConfidence

1-103

c2d

Purpose Convert model from continuous to discrete time

Syntax sysd = c2d(sys,Ts)
sysd = c2d(sys,Ts,method)
sysd = c2d(sys,Ts,opts)
[sysd,G] = c2d(sys,Ts,method)
[sysd,G] = c2d(sys,Ts,opts)

Description sysd = c2d(sys,Ts) discretizes the continuous-time dynamic system
model sys using zero-order hold on the inputs and a sample time of
Ts seconds.

sysd = c2d(sys,Ts,method) discretizes sys using the specified
discretization method method.

sysd = c2d(sys,Ts,opts) discretizes sys using the option set opts,
specified using the c2dOptions command.

[sysd,G] = c2d(sys,Ts,method) returns a matrix, G that maps the
continuous initial conditions x0 and u0 of the state-space model sys to
the discrete-time initial state vector x [0]. method is optional. To specify
additional discretization options, use [sysd,G] = c2d(sys,Ts,opts).

Tips • Use the syntax sysd = c2d(sys,Ts,method) to discretize sys using
the default options for method. To specify additional discretization
options, use the syntax sysd = c2d(sys,Ts,opts).

• To specify the tustin method with frequency prewarping (formerly
known as the 'prewarp' method), use the PrewarpFrequency option
of c2dOptions.

Input
Arguments

sys

Continuous-time dynamic system model (except frequency response
data models). sys can represent a SISO or MIMO system, except that
the 'matched' discretization method supports SISO systems only.

1-104

c2d

sys can have input/output or internal time delays; however, the
'matched' and 'impulse' methods do not support state-space models
with internal time delays.

The following identified linear systems cannot be discretized directly:

• idgrey models with FcnType is 'c'. Convert to idss model first.

• idproc models. Convert to idtf or idpoly model first.

For the syntax [sysd,G] = c2d(sys,Ts,opts), sys must be a
state-space model.

Ts

Sample time.

method

String specifying a discretization method:

• 'zoh'— Zero-order hold (default). Assumes the control inputs are
piecewise constant over the sampling period Ts.

• 'foh'—Triangle approximation (modified first-order hold). Assumes
the control inputs are piecewise linear over the sampling period Ts.

• 'impulse'— Impulse invariant discretization.

• 'tustin' — Bilinear (Tustin) method.

• 'matched' — Zero-pole matching method.

For more information about discretization methods, see
“Continuous-Discrete Conversion Methods”.

opts

Discretization options. Create opts using c2dOptions.

Output
Arguments

sysd

Discrete-time model of the same type as the input system sys.

1-105

c2d

When sys is an identified (IDLTI) model, sysd:

• Includes both measured and noise components of sys. The
innovations variance λ of the continuous-time identified model sys,
stored in its NoiseVarianceproperty, is interpreted as the intensity
of the spectral density of the noise spectrum. The noise variance in
sysd is thus λ/Ts.

• Does not include the estimated parameter covariance of sys. If you
want to translate the covariance while discretizing the model, use
translatecov.

G

Matrix relating continuous-time initial conditions x0 and u0 of the
state-space model sys to the discrete-time initial state vector x [0],
as follows:

x G
x
u

0 0

0
[] = ⋅

⎡

⎣
⎢

⎤

⎦
⎥

For state-space models with time delays, c2d pads the matrix G with
zeroes to account for additional states introduced by discretizing those
delays. See “Continuous-Discrete Conversion Methods” for a discussion
of modeling time delays in discretized systems.

Examples Discretize the continuous-time transfer function:

H s
s

s s
() = −

+ +
1

4 52

with input delay Td = 0.35 second. To discretize this system using the
triangle (first-order hold) approximation with sample time Ts = 0.1
second, type

H = tf([1 -1], [1 4 5], 'inputdelay', 0.35);
Hd = c2d(H, 0.1, 'foh'); % discretize with FOH method and

% 0.1 second sample time

1-106

c2d

Transfer function:
0.0115 z^3 + 0.0456 z^2 - 0.0562 z - 0.009104

z^6 - 1.629 z^5 + 0.6703 z^4

Sampling time: 0.1

The next command compares the continuous and discretized step
responses.

step(H,'-',Hd,'--')

Discretize the delayed transfer function

1-107

c2d

H s e
s s

s() =
+ +

−0 25
2

10

3 10
.

using zero-order hold on the input, and a 10-Hz sampling rate.

h = tf(10,[1 3 10],'iodelay',0.25); % create transfer function
hd = c2d(h, 0.1) % zoh is the default method

These commands produce the discrete-time transfer function

Transfer function:
0.01187 z^2 + 0.06408 z + 0.009721

z^(-3) * ----------------------------------
z^2 - 1.655 z + 0.7408

Sampling time: 0.1

In this example, the discretized model hd has a delay of three sampling
periods. The discretization algorithm absorbs the residual half-period
delay into the coefficients of hd.

Compare the step responses of the continuous and discretized models
using

step(h,'--',hd,'-')

1-108

c2d

Discretize a state-space model with time delay, using a Thiran filter
to model fractional delays:

sys = ss(tf([1, 2], [1, 4, 2])); % create a state-space model
sys.InputDelay = 2.7 % add input delay

This command creates a continuous-time state-space model with two
states, as the output shows:

a =
x1 x2

x1 -4 -2
x2 1 0

b =
u1

1-109

c2d

x1 2
x2 0

c =
x1 x2

y1 0.5 1

d =
u1

y1 0

Input delays (listed by channel): 2.7

Continuous-time model.

Use c2dOptions to create a set of discretization options, and discretize
the model. This example uses the Tustin discretization method.

opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder', 3);
sysd1 = c2d(sys, 1, opt) % 1s sampling time

These commands yield the result

a =
x1 x2 x3 x4 x5

x1 -0.4286 -0.5714 -0.00265 0.06954 2.286
x2 0.2857 0.7143 -0.001325 0.03477 1.143
x3 0 0 -0.2432 0.1449 -0.1153
x4 0 0 0.25 0 0
x5 0 0 0 0.125 0

b =
u1

x1 0.002058
x2 0.001029
x3 8
x4 0
x5 0

1-110

c2d

c =
x1 x2 x3 x4 x5

y1 0.2857 0.7143 -0.001325 0.03477 1.143

d =
u1

y1 0.001029

Sampling time: 1
Discrete-time model.

The discretized model now contains three additional states x3, x4,
and x5 corresponding to a third-order Thiran filter. Since the time
delay divided by the sampling time is 2.7, the third-order Thiran filter
(FractDelayApproxOrder = 3) can approximate the entire time delay.

Discretize an identified, continuous-time transfer function and compare
its performance against a directly estimated discrete-time model

Estimate a continuous-time transfer function and discretize it.

load iddata1
sys1c = tfest(z1, 2);
sys1d = c2d(sys1c, 0.1, 'zoh');

Estimate a second order discrete-time transfer function.

sys2d = tfest(z1, 2, 'Ts', 0.1);

Compare the two models.

compare(z1, sys1d, sys2d)

1-111

c2d

The two systems are virtually identical.

Discretize an identified state-space model to build a one-step ahead
predictor of its response.

load iddata2
sysc = ssest(z2, 4);
sysd = c2d(sysc, 0.1, 'zoh');
[A,B,C,D,K] = idssdata(sysd);
Predictor = ss(A-K*C, [K B-K*D], C, [0 D], 0.1);

The Predictor is a two input model which uses the measured output
and input signals ([z1.y z1.u]) to compute the 1-steap predicted
response of sysc.

Algorithms For information about the algorithms for each c2d conversion method,
see “Continuous-Discrete Conversion Methods”.

1-112

c2d

See Also c2dOptions | d2c | d2d | thiran | translatecov

How To • “Dynamic System Models”

• “Discretize a Compensator”

• “Continuous-Discrete Conversion Methods”

1-113

c2dOptions

Purpose Create option set for continuous- to discrete-time conversions

Syntax opts = c2dOptions
opts = c2dOptions('OptionName',

OptionValue)

Description opts = c2dOptions returns the default options for c2d.

opts = c2dOptions('OptionName', OptionValue) accepts one or
more comma-separated name/value pairs that specify options for the
c2d command. Specify OptionName inside single quotes.

Input
Arguments

Name-Value Pair Arguments

’Method’

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where c2d assumes the control inputs
are piecewise constant over the sampling period Ts.

'foh' Triangle approximation (modified first-order hold),
where c2d assumes the control inputs are piecewise
linear over the sampling period Ts. (See [1], p. 228.)

'impulse' Impulse-invariant discretization.

'tustin' Bilinear (Tustin) approximation. By default, c2d
discretizes with no prewarp and rounds any fractional
time delays to the nearest multiple of the sample
time. To include prewarp, use the PrewarpFrequency
option. To approximate fractional time delays, use
theFractDelayApproxOrder option.

'matched' Zero-pole matching method. (See [1], p. 224.) By
default, c2d rounds any fractional time delays
to the nearest multiple of the sample time. To
approximate fractional time delays, use the
FractDelayApproxOrder option.

1-114

c2dOptions

Default: 'zoh'

’PrewarpFrequency’

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the discretized system. Takes positive scalar values. A value of 0
corresponds to the standard 'tustin' method without prewarp.

Default: 0

’FractDelayApproxOrder’

Maximum order of the Thiran filter used to approximate fractional
delays in the 'tustin' and 'matched' methods. Takes integer values.
A value of 0 means that c2d rounds fractional delays to the nearest
integer multiple of the sample time.

Default: 0

Examples Discretize two models using identical discretization options.

% generate two arbitrary continuous-time state-space models
sys1 = rss(3, 2, 2);
sys2 = rss(4, 4, 1);

Use c2dOptions to create a set of discretization options.

opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency', 3.4);

Then, discretize both models using the option set.

dsys1 = c2d(sys1, 0.1, opt); % 0.1s sampling time
dsys2 = c2d(sys2, 0.2, opt); % 0.2s sampling time

The c2dOptions option set does not include the sampling time Ts. You
can use the same discretization options to discretize systems using a
different sampling time.

1-115

c2dOptions

References [1] Franklin, G.F., Powell, D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also c2d

1-116

canon

Purpose State-space canonical realization

Syntax csys = canon(sys,type)
[csys,T]= canon(sys,type)
csys = canon(sys,'modal',condt)

Description csys = canon(sys,type) transforms the linear model sys into a
canonical state-space model csys. The argument type specifies
whether csys is in modal or companion form.

[csys,T]= canon(sys,type) also returns the state-coordinate
transformation T that relates the states of the state-space model sys to
the states of csys.

csys = canon(sys,'modal',condt) specifies an upper bound condt
on the condition number of the block-diagonalizing transformation.

Input
Arguments

sys

Any linear dynamic system model, except for frd models.

type

String specifying the type of canonical form of csys. type can take
one of the two following values:

• 'modal' — convert sys to modal form.

• 'companion' — convert sys to companion form.

condt

Positive scalar value specifying an upper bound on the condition
number of the block-diagonalizing transformation that converts sys to
csys. This argument is available only when type is 'modal'.

Increase condt to reduce the size of the eigenvalue clusters in the A
matrix of csys. Setting condt = Inf diagonalizes A.

Default: 1e8

1-117

canon

Output
Arguments

csys

State-space (ss) model. csys is a state-space realization of sys in the
canonical form specified by type.

T

Matrix specifying the transformation between the state vector x of the
state-space model sys and the state vector xc of csys:

xc = Tx

.

This argument is available only when sys is state-space model.

Definitions Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically
1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues.
However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (, ,) 1 2± j , the modal A
matrix is of the form

1

2

0 0 0
0 0
0 0
0 0 0

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Companion Form

In the companion realization, the characteristic polynomial of the
system appears explicitly in the rightmost column of the A matrix. For
a system with characteristic polynomial

p s s s sn n
n n() = + + + +−
− 1

1
1

1-118

canon

the corresponding companion A matrix is

A

n

n

=

−
− −

−
−

⎡

⎣

⎢
⎢
⎢

0 0 0
1 0 0 0 1
0 1 0

0
0 1 0
0 0 1

2

1

.. ..
..
.

. .
. .
.. ..

: :
: : :⎢⎢

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The companion transformation requires that the system be controllable
from the first input. The companion form is poorly conditioned for most
state-space computations; avoid using it when possible.

Examples This example uses canon to convert a system having doubled poles and
clusters of close poles to modal canonical form.

Consider the system G having the following transfer function:

G s
s s

s s s s i s i
() = −() +()

+() +() − +()() − −()()
100

1 1

10 10 0001 1 12 2.
.

To create a linear model of this system and convert it to modal canonical
form, enter:

G = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
Gc = canon(G,'modal');

The system G has a pair of nearby poles at s = –10 and s = –10.0001. G
also has two complex poles of multiplicity 2 at s = 1 + i and s = 1 – i.
As a result, the modal form, has a block of size 2 for the two poles near
s = –10, and a block of size 4 for the complex eigenvalues. To see this,
enter the following command:

Gc.A

ans =

1-119

canon

0 0 0 0 0 0 0

0 1.0000 1.0000 0 0 0 0

0 -1.0000 1.0000 2.0548 0 0 0

0 0 0 1.0000 1.0000 0 0

0 0 0 -1.0000 1.0000 0 0

0 0 0 0 0 -10.0000 8.0573

0 0 0 0 0 0 -10.0001

To separate the two poles near s = –10, you can increase the value of
condt. For example:

Gc2 = canon(G,'modal',1e10);
Gc2.A

ans =

0 0 0 0 0 0 0

0 1.0000 1.0000 0 0 0 0

0 -1.0000 1.0000 2.0548 0 0 0

0 0 0 1.0000 1.0000 0 0

0 0 0 -1.0000 1.0000 0 0

0 0 0 0 0 -10.0000 0

0 0 0 0 0 0 -10.0001

The A matrix of Gc2 includes separate diagonal elements for the poles
near s = –10. The cost of increasing the maximum condition number of
A is that the B matrix includes some large values.

format shortE
Gc2.B

ans =

3.2000e-001
-6.5691e-003
5.4046e-002

-1.9502e-001

1-120

canon

1.0637e+000
3.2533e+005
3.2533e+005

This example estimates a state-space model that is freely parameterized
and convert to companion form after estimation.

load icEngine.mat
z = iddata(y,u,0.04);
FreeModel = n4sid(z,4,'InputDelay',2);
CanonicalModel = canon(FreeModel, 'companion')

Obtain the covariance of the resulting form by running a zero-iteration
update to model parameters.

opt = ssestOptions; opt.SearchOption.MaxIter = 0;
CanonicalModel = ssest(z, CanonicalModel, opt)

Compare frequency response confidence bounds of FreeModel to
CanonicalModel.

h = bodeplot(FreeModel, CanonicalModel)

the bounds are identical.

Algorithms The canon command uses the bdschur command to convert sys into
modal form and to compute the transformation T. If sys is not a
state-space model, the algorithm first converts it to state space using ss.

The reduction to companion form uses a state similarity transformation
based on the controllability matrix [1].

References [1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also ctrb | ctrbf | ss2ss

1-121

chgFreqUnit

Purpose Change frequency units of frequency-response data model

Syntax sys_new = chgFreqUnit(sys,newfrequnits)

Description sys_new = chgFreqUnit(sys,newfrequnits) changes units of the
frequency points in sys to newfrequnits. Both Frequency and
FrequencyUnit properties of sys adjust so that the frequency responses
of sys and sys_new match.

Tips • Use chgFreqUnit to change the units of frequency points without
modifying system behavior.

Input
Arguments

sys

Frequency-response data (frd, idfrd, or genfrd) model

newfrequnits

New units of frequency points, specified as one of the following strings:

• 'rad/TimeUnit'

• 'cycles/TimeUnit'

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

rad/TimeUnit and cycles/TimeUnit express frequency units relative
to the system time units specified in the TimeUnit property.

Default: 'rad/TimeUnit'

1-122

chgFreqUnit

Output
Arguments

sys_new

Frequency-response data model of the same type as sys with new units
of frequency points. The frequency response of sys_new is same as sys.

Examples This example shows how to change units of the frequency points in a
frequency-response data model.

1 Create a frequency-response data model.

load AnalyzerData;
sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp.
These vectors contain 256 test frequencies and corresponding
complex-valued frequency response points, respectively. The default
frequency units of sys is rad/TimeUnit, where TimeUnit is the
system time units.

2 Change the frequency units.

sys1 = chgFreqUnit(sys,'rpm');

The FrequencyUnit property of sys1 is rpm.

3 Compare the Bode responses of sys and sys1.

bode(sys,'r',sys1,'y--');
legend('sys','sys1')

The magnitude and phase of sys and sys1 match.

1-123

chgFreqUnit

4 (Optional) Change the FrequencyUnit property of sys to compare
the Bode response with the original system.

sys2=sys;
sys2.FrequencyUnit = 'rpm';
bode(sys,'r',sys2,'gx');
legend('sys','sys2');

Changing the FrequencyUnit property changes the original system.
Therefore, the Bode responses of sys and sys2 do not match. For
example, the original corner frequency at 2 rad/s changes to 2 rpm
(or 0.2 rad/s).

1-124

chgFreqUnit

See Also chgTimeUnit | frd | idfrd

1-125

chgFreqUnit

Tutorials • “Specify Frequency Units of Frequency-Response Data Model”1

1.

1-126

chgTimeUnit

Purpose Change time units of dynamic system

Syntax sys_new = chgTimeUnit(sys,newtimeunits)

Description sys_new = chgTimeUnit(sys,newtimeunits) changes the time
units of sys to newtimeunits. The time- and frequency-domain
characteristics of sys and sys_new match.

Tips • Use chgTimeUnit to change the time units without modifying system
behavior.

Input
Arguments

sys

Dynamic system model

newtimeunits

New time units, specified as one of the following strings:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

1-127

chgTimeUnit

Output
Arguments

sys_new

Dynamic system model of the same type as sys with new time units.
The time response of sys_new is same as sys.

If sys is an identified linear model, both the model parameters as and
their minimum and maximum bounds are scaled to the new time units.

Examples This example shows how to change the time units of a transfer function
model.

1 Create a transfer function model.

num = [4 2];
den = [1 3 10];
sys = tf(num,den);

The default time units of sys is seconds.

2 Change the time units.

sys1 = chgTimeUnit(sys,'minutes');

The TimeUnit property of sys1 is milliseconds.

3 Compare the step responses of sys and sys1.

step(sys,'r',sys1,'y--');
legend('sys','sys1');

1-128

chgTimeUnit

The step responses of sys and sys1 match.

4 (Optional) Change the TimeUnit property of sys, and compare the
step response with the original system.

sys2=sys;
sys2.TimeUnit = 'minutes';
step(sys,'r', sys2,'gx');
legend('sys','sys2');

Changing the TimeUnit property changes the original system.
Therefore, the step responses of sys and sys2 do not match. For
example, the original rise time of 0.04 seconds changes to 0.04
minutes.

1-129

chgTimeUnit

See Also chgFreqUnit | tf | zpk | ss | frd | pid | idss | idpoly | idtf |
idproc

Tutorials • “Specify Model Time Units”

1-130

compare

Purpose Compare model output and measured output

Syntax compare(data,sys)
compare(data,sys,prediction_horizon)
compare(data,sys,style,prediction_horizon)
compare(data,sys1,...,sysN,prediction_horizon)
compare(data,sys1,style1,...,sysN,styleN,prediction_horizon)
compare(___ ,opt)
[y,fit,x0] = compare(___)

Description compare(data,sys) plots the simulated response of a dynamic system
model, sys, superimposed over validation data, data, for comparison.
The plot also displays the normalized root mean square (NRMSE)
measure of the goodness of the fit.

The matching of the input/output channels in data and sys is based on
the channel names. Thus, it is possible to evaluate models that do not
use all the input channels that are available in data.

compare(data,sys,prediction_horizon) compares the predicted
response of sys to the measured response in data. Measured output
values in data up to time t-prediction_horizon are used to predict
the output of sys at time t.

compare(data,sys,style,prediction_horizon) uses style to
specify the line type, marker symbol, and color.

compare(data,sys1,...,sysN,prediction_horizon) compares
multiple dynamic systems responses on the same axes. compare
automatically chooses colors and line styles in the order specified by the
ColorOrder and LineStyleOrder properties of the current axes.

compare(data,sys1,style1,...,sysN,styleN,prediction_horizon)
compares multiple systems responses on the same axes using the line
type, marker symbol, and color specified for each system.

compare(___ ,opt) configures the comparison using an option set, opt.

[y,fit,x0] = compare(___) returns the model response, y, goodness
of fit value, fit, and the initial states, x0. No plot is generated.

1-131

compare

Input
Arguments

data

Validation data.

Specify data as either an iddata or idfrd object.

If sys is an iddata object, then data must be an iddata object with
matching domain, number of experiments and time or frequency vectors.

If sys is a frequency response model (idfrd or frd), then data must be
a frequency response model too.

data can represent either time- or frequency-domain data when
comparing with linear models. data must be time-domain data when
comparing with a nonlinear model.

For frequency domain data, the real and imaginary parts of the
corresponding frequency functions are shown in separate axes.

When data is an FRD model, the frequency responses of data and
sys are plotted.

sys

iddata object or dynamic system model.

When the time or frequency units of data do not match those of sys,
sys is rescaled to match the units of data.

prediction_horizon

Prediction horizon.

Specify prediction_horizon as Inf to obtain a pure simulation of
the system.

prediction_horizon is ignored when sys is an iddata object,
an FRD model or a dynamic system with no noise component.
prediction_horizon is also ignored when using frequency response
validation data.

For time-series models, use a finite value for prediction_horizon.

1-132

compare

Default: Inf

style

Line style, marker, and color of both the linear and marker, specified as
a one-, two-, or three-part string enclosed in single quotes (' '). The
elements of the string can appear in any order. The string can specify
only the line style, the marker, or the color.

For more information about configuring the style string, see “Colors,
Line Styles, and Markers” in the MATLAB documentation.

opt

Comparison option set.

opt is an option set created using compareOptions, which specifies
options including:

• Handling of initial conditions

• Sample range for computing fit numbers

• Data offsets

• Output weighting

Output
Arguments

y

Model response.

Measured output values in data up to time t = t-prediction_horizon
are used to predict the output of sys at time t.

For multimodel comparisons, y is a cell array, with one entry for each
input model.

For multiexperiment data, y is a cell array, with one entry for each
experiment.

For multimodel comparisons using multiexperiment data, y is an
Nsys-by-Nexp cell array. Nsys is the number of models, and Nexp is
the number of experiments.

1-133

compare

If sys is a model array, then y is an array, with an entry corresponding
to each model in sys and experiment in data.

fit

NRMSE fitness value.

The fit is calculated (in percentage) using:

fit
mean

100 1

y y

y y

ˆ

where y is the validation data output and ŷ is the output of sys.

For FRD models, fit is calculated by comparing the complex frequency
response. The magnitude and phase curves shown in the plot are not
compared separately.

If data is an iddata object, fit is an Ny-by-1 vector, where Ny is the
number of outputs.

If data is an FRD model with Ny outputs and Nu inputs, fit is an
Ny-by-Nu matrix. Each entry of fit corresponds to an input/output
pair in sys.

For multimodel comparisons, fit is a cell array, with one entry for
each input model.

For multiexperiment data, fit is a cell array, with one entry for each
experiment.

For multimodel comparisons using multiexperiment data, fit is an
Nsys-by-Nexp cell array. Nsys is the number of models, and Nexp is
the number of experiments.

x0

Initial conditions used to compute system response.

When sys is an frd or iddata object, x0 is [].

1-134

compare

For multimodel comparisons, x0 is a cell array, with one entry for each
input model.

For multiexperiment data, x0 is a cell array, with one entry for each
experiment.

For multimodel comparisons using multiexperiment data, x0 is an
Nsys-by-Nexp cell array. Nsys is the number of models, and Nexp is
the number of experiments.

Examples Compare Estimated Model to Measured Data

Estimate a state-space model for measured data.

load iddata1 z1;
sys = ssest(z1,3)

sys, an idss model, is a continuous-time state-space model.

Compare the predicted output for 10 steps ahead to the measured
output.

prediction_horizon = 10;
compare(z1,sys,prediction_horizon);

1-135

compare

Compare Multiple Estimated Models to Measured Data

Compare the outputs of multiple estimated models, of differing types, to
measured data.

This example compares the outputs of an estimated process model and
an estimated Output-Error polynomial model to measured data.

Estimate a process model and an Output-Error polynomial for frequency
response data.

load demofr % frequency response data
zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys1 = procest(data,'P2UDZ');

1-136

compare

sys2 = oe(data,[2 2 1]);

sys1, an idproc model, is a continuous-time process model. sys2, an
idpoly model, is a discrete-time Output-Error model.

Compare the frequency response of the estimated models to data.

compare(data,sys1,'g',sys2,'r');

Compare Estimated Model to Data and Specify Comparison
Options

Compare an estimated model to measured data. Specify that the initial
conditions be estimated such that the prediction error of the observed
output is minimized.

1-137

compare

Estimate a transfer function for measured data.

load iddata1 z1;
sys = tfest(z1,3)

sys, an idtf model, is a continuous-time transfer function model.

Create an option set to specify the initial condition handling.

opt = compareOptions('InitialCondition','e');

Compare the estimated transfer function model’s output to the
measured data using the comparison option set.

compare(z1,sys,opt);

1-138

compare

See Also compareOptions | sim | predict | resid | forecast | interp
| goodnessOfFit | chgTimeUnit | chgFreqUnit | bode

1-139

compareOptions

Purpose Option set for compare

Syntax opt = compareOptions
opt = compareOptions(Name,Value)

Description opt = compareOptions creates the default options set for compare.

opt = compareOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Samples’

Data for which compare calculates fit values.

Specify Samples as a vector containing the data sample indices. For
multiexperiment data, use a cell array of Ne vectors, where Ne is the
number of experiments.

’InitialCondition’

Specify how initial conditions are handled.

InitialCondition requires one of the following values:

• 'z' — Zero initial conditions.

• 'e'— Estimate initial conditions such that the prediction error for
observed output is minimized.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients. Use this option for discrete-time models only.

1-140

compareOptions

• x0 — Numerical column vector denoting initial states. For
multiexperiment data, use a matrix with Ne columns, where Ne is the
number of experiments. Use this option for state-space models only.

• io — Structure with the following fields:

- Input

- Output

Use the Input and Output fields to specify the input/output history
for a time interval that starts before the start time of the data used
by compare. If the data used by compare is a time-series model,
specify Input as []. Use a row vector to denote a constant signal
value. The number of columns in Input and Output must always
equal the number of input and output channels, respectively. For
multiexperiment data, specify io as a struct array of Ne elements,
where Ne is the number of experiments.

• x0obj— Specification object created using idpar. Use this object for
discrete-time state-space models only (idss, idgrey) . Use x0obj
to impose constraints on the initial states by fixing their value or
specifying minimum/maximum bounds.

Default: 'e'

’InputOffset’

Removes offset from time domain input data for model response
computation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

1-141

compareOptions

Default: []

’OutputOffset’

Removes offset from time domain output data for model response
prediction.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Weight of output for initial condition estimation.

OutputWeight requires one of the following values:

• []— No weighting is used. This option is the same as using eye(Ny)
for the output weight. Ny is the number of outputs.

• 'noise'— Inverse of the noise variance stored with the model.

• Matrix of doubles — A positive semi-definite matrix of dimension
Ny-by-Ny. Ny is the number of outputs.

Default: []

Output
Arguments

opt

Option set containing the specified options for compare.

1-142

compareOptions

Examples Create Default Options Set for Model Comparison

Create a default options set for compare.

opt = compareOptions;

Specify Options for Model Comparison

Create an options set for compare using zero initial conditions. Set
the input offset to 5.

opt = compareOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = compareOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also compare

1-143

cra

Purpose Estimate impulse response using prewhitened-based correlation
analysis

Syntax ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)

Description ir=cra(data) estimates the impulse response for the time-domain
data, data.

[ir,R,cl] = cra(data,M,na,plot) estimates correlation/covariance
information, R, and the 99% confidence level for the impulse response,
cl.

cra prewhitens the input sequence; that is, cra filters u through a
filter chosen so that the result is as uncorrelated (white) as possible.
The output y is subjected to the same filter, and then the covariance
functions of the filtered y and u are computed and graphed. The
cross correlation function between (prewhitened) input and output is
also computed and graphed. Positive values of the lag variable then
correspond to an influence from u to later values of y. In other words,
significant correlation for negative lags is an indication of feedback
from y to u in the data.

A properly scaled version of this correlation function is also an estimate
of the system’s impulse response ir. This is also graphed along with
99% confidence levels. The output argument ir is this impulse response
estimate, so that its first entry corresponds to lag zero. (Negative lags
are excluded in ir.) In the plot, the impulse response is scaled so that
it corresponds to an impulse of height 1/T and duration T, where T is
the sampling interval of the data.

Input
Arguments

data

Input-output data.

Specify data as an iddata object containing time-domain data only.

1-144

cra

data should contain data for a single-input, single-output experiment.
For the multivariate case, apply cra to two signals at a time, or use
impulse.

M

Number of lags for which the covariance/correlation functions are
computed.

M specifies the number of lags for which the covariance/correlation
functions are computed. These are from -M to M, so that the length of R
is 2M+1. The impulse response is computed from 0 to M.

Default: 20

na

Order of the AR model to which the input is fitted.

For the prewhitening, the input is fitted to an AR model of order na.

Use na = 0 to obtain the covariance and correlation functions of the
original data sequences.

Default: 10

plot

Plot display control.

Specify plot as one of the following integers:

• 0 — No plots are displayed.

• 1 — Plots the estimated impulse response with a 99% confidence
region.

• 2 — Plots all the covariance functions.

Default: 1

1-145

cra

Output
Arguments

ir

Estimated impulse response.

The first entry of ir corresponds to lag zero. (Negative lags are
excluded in ir.)

R

Covariance/correlation information.

• The first column of R contains the lag indices.

• The second column contains the covariance function of the (possibly
filtered) output.

• The third column contains the covariance function of the (possibly
prewhitened) input.

• The fourth column contains the correlation function. The plots can
be redisplayed by cra(R).

cl

99 % significance level for the impulse response.

Examples Compare a second-order ARX model’s impulse response with the one
obtained by correlation analysis.

load iddata1
z=z1;
ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(20,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')

1-146

cra

Alternatives An often better alternative to cra is the functions impulse and step,
which use a high-order FIR model to estimate the impulse response.

See Also impulse | step | impulseest | spa

1-147

customnet

Purpose Custom nonlinearity estimator for nonlinear ARX and
Hammerstein-Wiener models

Syntax C=customnet(H)
C=customnet(H,PropertyName,PropertyValue)

Description customnet is an object that stores a custom nonlinear estimator with a
user-defined unit function. This custom unit function uses a weighted
sum of inputs to compute a scalar output.

Construction C=customnet(H) creates a nonlinearity estimator object with a
user-defined unit function using the function handle H. H must point
to a function of the form [f,g,a] = gaussunit(x), where f is the
value of the function, g=df/dx, and a indicates the unit function active
range. Name the function gaussunit.m. g is significantly nonzero in
the interval [-a a]. Hammerstein-Wiener models require that your
custom nonlinearity have only one input and one output.

C=customnet(H,PropertyName,PropertyValue) creates a nonlinearity
estimator using property-value pairs defined in “customnet Properties”
on page 1-149.

Tips Use customnet to define a nonlinear function y F x= () , where y is
scalar and x is an m-dimensional row vector. The unit function is based
on the following function expansion with a possible linear term L:

F x x r PL a f x r Qb c() ()= − + −() +() +
+

1 1 1

 aa f x r Qb c dn n n−() +() +
where f is a unit function that you define using the function handle H.

P and Q are m-by-p and m-by-q projection matrices, respectively. The
projection matrices P and Q are determined by principal component
analysis of estimation data. Usually, p=m. If the components of x in
the estimation data are linearly dependent, then p<m. The number of
columns of Q, q, corresponds to the number of components of x used
in the unit function.

1-148

customnet

When used to estimate nonlinear ARX models, q is equal to the size of
the NonlinearRegressors property of the idnlarx object. When used
to estimate Hammerstein-Wiener models, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, a, and c are scalars.

L is a p-by-1 vector.

b represents q-by-1 vectors.

The function handle of the unit function of the custom net must have the
form [f,g,a] = function_name(x). This function must be vectorized,
which means that for a vector or matrix x, the output arguments f and
g must have the same size as x and be computed element-by-element.

customnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of NumberOfUnits property
C.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(C, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.

1-149

customnet

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default=10.

For example:

customnet(H,'NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

customnet(H,'LinearTerm','on')

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-1 matrix containing the values bn.

• Translation: 1-by-n vector containing the values cn.

• OutputCoef: n-by-1 vector containing the values an.

• OutputOffset: scalar d.

Typically, the values of this structure are set by estimating a
model with a customnet nonlinearity.

UnitFcn Stores the function handle that points to the unit function.

1-150

customnet

Algorithms customnet uses an iterative search technique for estimating
parameters.

Examples Define custom unit function and save it in gaussunit.m:

function [f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])

% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.

% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1

g = - 2*x.*f;
a = 0.2;

end

Use custom networks in nlarx and nlhw model estimation commands:

% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));

See Also evaluate | nlarx | nlhw

How To • “Identifying Nonlinear ARX Models”

1-151

customnet

• “Identifying Hammerstein-Wiener Models”

1-152

customreg

Purpose Custom regressor for nonlinear ARX models

Syntax C=customreg(Function,Variables)
C=customreg(Function,Variables,Delays,Vectorized)

Description customreg class represents arbitrary functions of past inputs and
outputs, such as products, powers, and other MATLAB expressions of
input and output variables.

You can specify custom regressors in addition to or instead of standard
regressors for greater flexibility in modeling your data using nonlinear
ARX models. For example, you can define regressors like tan(u(t-1)),
u(t-1)2, and u(t-1)*y(t-3).

For simpler regressor expressions, specify custom regressors directly
in the GUI or in the nlarx estimation command. For more complex
expressions, create a customreg object for each custom regressor and
specify these objects as inputs to the estimation. Regardless of how you
specify custom regressors, the toolbox represents these regressors as
customreg objects. Use getreg to list the expressions of all standard
and custom regressors in your model.

A special case of custom regressors involves polynomial combinations
of past inputs and outputs. For example, it is common to capture
nonlinearities in the system using polynomial expressions like y(t−1)2,
u(t−1)2, y(t−2)2, y(t−1)*y(t−2), y(t−1)*u(t−1), y(t− 2)*u(t−1). At the
command line, use the polyreg command to generate polynomial-type
regressors automatically by computing all combinations of input and
output variables up to a specified degree. polyreg produces customreg
objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors
as the CustomRegressors property. You can list all custom regressors
using m.CustomRegressors, where m is a nonlinear ARX model. For
MIMO models, to retrieve the rth custom regressor for output ky, use
m.CustomRegressors{ky}(r).

Use the Vectorized property to specify whether to compute custom
regressors using vectorized form during estimation. If you know

1-153

customreg

that your regressor formulas can be vectorized, set Vectorized to 1
to achieve better performance. To better understand vectorization,
consider the custom regressor function handle z=@(x,y)x^2*y. x
and y are vectors and each variable is evaluated over a time grid.
Therefore, z must be evaluated for each (xi,yi) pair, and the results
are concatenated to produce a z vector:

for k = 1:length(x)
z(k) = x(k)^2*y(k)

end

The above expression is a nonvectorized computation and tends
to be slow. Specifying a Vectorized computation uses MATLAB
vectorization rules to evaluate the regressor expression using matrices
instead of the FOR-loop and results in faster computation:

% ".*" indicates element-wise operation
z=(x.^2).*y

Construction C=customreg(Function,Variables) specifies a custom regressor for
a nonlinear ARX model. C is a customreg object that stores custom
regressor. Function is a handle or string representing a function
of input and output variables. Variables is a cell array of strings
that represent the names of model inputs and outputs in the function
Function. Each input and output name must coincide with the strings
in the InputName and OutputName properties of the corresponding
idnlarx object. The size of Variables must match the number of
Function inputs. For multiple-output models with p outputs, the
custom regressor is a p-by-1 cell array or an array of customreg
object, where the kyth entry defines the custom regressor for output
ky. You must add these regressors to the model by assigning the
CustomRegressors model property or by using addreg.

C=customreg(Function,Variables,Delays,Vectorized) create a
custom regressor that includes the delays corresponding to inputs or
outputs in Arguments. Delays is a vector of positive integers that
represent the delays of Variables variables (default is 1 for each
vector element). The size of Delays must match the size of Variables.

1-154

customreg

Vectorized value of 1 uses MATLAB vectorization rules to evaluate
the regressor expression Function. By default, Vectorized value is 0
(false).

Properties After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(C)
% Get value of Arguments property
C.Arguments

You can also use the set function to set the value of particular
properties. For example:

set(C,'Vectorized',1)

Property Name Description

Function Function handle or string representing a function of standards
regressors.

For example:

cr = @(x,y) x*y

Variables Cell array of strings that represent the names of model input
and output variables in the function Function. Each input and
output name must coincide with the strings in the InputName
and OutputName properties of the idnlarx object—the model
for which you define custom regressors. The size of Variables
must match the number of Function inputs.

For example, Variables correspond to {'y1','u1'} in:

C = customreg(cr,{'y1','u1'},[2 3])

1-155

customreg

Property Name Description

Delays Vector of positive integers representing the delays of
Variables. The size of Delays must match the size of
Arguments.

Default: 1 for each vector element.

For example, Delays are [2 3] in:

C = customreg(cr,{'y1','u1'},[2 3])

Vectorized Assignable values:

• 0 (default)—Function is not computed in vectorized form.

• 1—Function is computed in vectorized form when called
with vector arguments.

Examples Define custom regressors as a cell array of strings:

load iddata1
m = nlarx(z1,[2 2 1]);
C={'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};
% u1 and y1 are system input and output

m.CustomRegressors = C;
m=pem(z1,m)

Define custom regressors directly in the estimation command nlarx:

m = nlarx(data,[na nb nk],'linear',...
'CustomRegressors',...
{'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});

Define custom regressors as an object array of customreg objects:

1-156

customreg

cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u' 'y'},[1 3]),...

customreg(cr2,{'u'},2)];
m=addreg(m,C);

Use vectorization rules to evaluate regressor expression during
estimation:

C = customreg(@(x,y) x*sin(y),{'u' 'y'},[1 3])
set(C,'Vectorized',1)
m = nlarx(data,[na nb nk],'sigmoidnet','CustomReg',C)

See Also addreg | getreg | idnlarx | nlarx | polyreg

How To • “Identifying Nonlinear ARX Models”

1-157

d2c

Purpose Convert model from discrete to continuous time

Syntax sysc = d2c(sysd)
sysc = d2c(sysd,method)
sysc = d2c(sysd,opts)
[sysc,G] = d2c(sysd,method,opts)

Description sysc = d2c(sysd) produces a continuous-time model sysc that is
equivalent to the discrete-time dynamic system model sysd using
zero-order hold on the inputs.

sysc = d2c(sysd,method) uses the specified conversion method
method.

sysc = d2c(sysd,opts) converts sysd using the option set opts,
specified using the d2cOptions command.

[sysc,G] = d2c(sysd,method,opts) returns a matrix G that maps the
states xd[k] of the state-space model sysd to the states xc(t) of sysc.

Tips • Use the syntax sysc = d2c(sysd,'method') to convert sysd using
the default options for'method'. To specify tustin conversion with a
frequency prewarp (formerly the 'prewarp' method), use the syntax
sysc = d2c(sysd,opts). See the d2cOptions reference page for
more information.

Input
Arguments

sysd

Discrete-time dynamic system model

You cannot directly use an idgrey model with FcnType='d' with d2c.
Convert the model into idss form first.

method

String specifying a discrete-to-continuous time conversion method:

• 'zoh'— Zero-order hold on the inputs. Assumes the control inputs
are piecewise constant over the sampling period.

1-158

d2c

• 'foh' — Linear interpolation of the inputs (modified first-order
hold). Assumes the control inputs are piecewise linear over the
sampling period.

• 'tustin'— Bilinear (Tustin) approximation to the derivative.

• 'matched' — Zero-pole matching method of [1] (for SISO systems
only).

Default: 'zoh'

opts

Discrete-to-continuous time conversion options, created using
d2cOptions.

Output
Arguments

sysc

Continuous-time model of the same type as the input system sysd.

When sysd is an identified (IDLTI) model, sysc:

• Includes both the measured and noise components of sysd. If the
noise variance is λ in sysd, then the continuous-time model sysc has
an indicated level of noise spectral density equal to Ts*λ.

• Does not include the estimated parameter covariance of sysd. If you
want to translate the covariance while converting the model, use
translatecov.

G

Matrix mapping the states xd[k] of the state-space model sysd to the
states xc(t) of sysc:

x kT G
x k
u kc s
d

 .

1-159

d2c

Given an initial condition x0 for sysd and an initial input u0 = u[0],
the corresponding initial condition for sysc (assuming u[k] = 0 for k
< 0 is given by:

x G
x
uc 0 0

0

 .

Examples Example 1

Consider the discrete-time model with transfer function

H z
z

z z
() = −

+ +
1

0 32 .

and sample time Ts = 0.1 s. You can derive a continuous-time
zero-order-hold equivalent model by typing

Hc = d2c(H)

Discretizing the resulting model Hc with the default zero-order hold
method and sampling time Ts = 0.1s returns the original discrete model
H(z):

c2d(Hc,0.1)

To use the Tustin approximation instead of zero-order hold, type

Hc = d2c(H,'tustin')

As with zero-order hold, the inverse discretization operation

c2d(Hc,0.1,'tustin')

gives back the original H(z).

1-160

d2c

Example 2

Convert an identified transfer function and compare its performance
against a directly estimated continuous-time model.

load iddata1
sys1d = tfest(z1, 2, 'Ts', 0.1);
sys1c = d2c(sys1d, 'zoh');
sys2c = tfest(z1, 2);

compare(z1, sys1c, sys2c)

The two systems are virtually identical.

Example 3

Analyze the effect of parameter uncertainty on frequency response
across d2c operation on an identified model.

load iddata1

1-161

d2c

sysd = tfest(z1, 2, 'Ts', 0.1);
sysc = d2c(sysd, 'zoh');

sys1c has no covariance information. Regenerate it using a zero
iteration update with the same estimation command and estimation
data:

opt = tfestOptions;
opt.SearchOption.MaxIter = 0;
sys1c = tfest(z1, sysc, opt);

h = bodeplot(sysd, sysc);
showConfidence(h)

The uncertainties of sysc and sysd are comparable up to the Nyquist
frequency. However, sysc exhibits large uncertainty in the frequency
range for which the estimation data does not provide any information.

If you do not have access to the estimation data, use translatecov
which is a Gauss-approximation formula based translation of covariance
across model type conversion operations.

Algorithms d2c performs the 'zoh' conversion in state space, and relies on the
matrix logarithm (see logm in the MATLAB documentation).

See “Continuous-Discrete Conversion Methods” for more details on the
conversion methods.

Limitations The Tustin approximation is not defined for systems with poles at z = –1
and is ill-conditioned for systems with poles near z = –1.

The zero-order hold method cannot handle systems with poles at z = 0.
In addition, the 'zoh' conversion increases the model order for systems
with negative real poles, [2]. The model order increases because the
matrix logarithm maps real negative poles to complex poles. Single
complex poles are not physically meaningful because of their complex
time response.

1-162

d2c

Instead, to ensure that all complex poles of the continuous model
come in conjugate pairs, d2c replaces negative real poles z = –α with
a pair of complex conjugate poles near –α. The conversion then yields
a continuous model with higher order. For example, to convert the
discrete-time transfer function

H z
z

z z z
() = +

+() + +()
0 2

0 5 0 42

.

. .

type:

Ts = 0.1 % sample time 0.1 s
H = zpk(-0.2,-0.5,1,Ts) * tf(1,[1 1 0.4],Ts)
Hc = d2c(H)

These commands produce the following result.

Warning: System order was increased to handle real negative poles.

Zero/pole/gain:

-33.6556 (s-6.273) (s^2 + 28.29s + 1041)

--

(s^2 + 9.163s + 637.3) (s^2 + 13.86s + 1035)

To convert Hc back to discrete time, type:

c2d(Hc,Ts)

yielding

Zero/pole/gain:
(z+0.5) (z+0.2)

(z+0.5)^2 (z^2 + z + 0.4)

Sampling time: 0.1

1-163

d2c

This discrete model coincides with H(z) after canceling the pole/zero
pair at z = –0.5.

References [1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997..

[2] Kollár, I., G.F. Franklin, and R. Pintelon, "On the Equivalence of
z-domain and s-domain Models in System Identification," Proceedings
of the IEEE® Instrumentation and Measurement Technology Conference,
Brussels, Belgium, June, 1996, Vol. 1, pp. 14-19.

See Also d2cOptions | c2d | d2d | translatecov | logm

1-164

d2cOptions

Purpose Create option set for discrete- to continuous-time conversions

Syntax opts = d2cOptions
opts = d2cOptions(Name,Value)

Description opts = d2cOptions returns the default options for d2c.

opts = d2cOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

’method’

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2c assumes the control inputs
are piecewise constant over the sampling period Ts.

'foh' Linear interpolation of the inputs (modified first-order
hold). Assumes the control inputs are piecewise linear
over the sampling period.

'tustin' Bilinear (Tustin) approximation. By default, d2c
converts with no prewarp. To include prewarp, use
the PrewarpFrequency option.

'matched' Zero-pole matching method. (See [1], p. 224.)

Default: 'zoh'

’PrewarpFrequency’

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the discrete-time system. Specify the prewarp frequency as a positive
scalar value. A value of 0 corresponds to the 'tustin' method without
prewarp.

1-165

d2cOptions

Default: 0

For additional information about conversion methods, see
“Continuous-Discrete Conversion Methods”.

Examples Convert a discrete-time model to continuous-time using the 'tustin'
method with frequency prewarping.

Create the discrete-time transfer function

z

z z

+
+ +

1

12

hd = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To convert to continuous-time, use d2cOptions to create the option set.

opts = d2cOptions('Method', 'tustin', 'PrewarpFrequency', 20);
hc = d2c(hd, opts);

You can use opts to resample additional models using the same options.

References [1] Franklin, G.F., Powell,D.J., and Workman, M.L., Digital Control of
Dynamic Systems (3rd Edition), Prentice Hall, 1997.

See Also d2c

1-166

d2d

Purpose Resample discrete-time model

Syntax sys1 = d2d(sys, Ts)
sys1 = d2d(sys, Ts, 'method')
sys1 = d2d(sys, Ts, opts)

Description sys1 = d2d(sys, Ts) resamples the discrete-time dynamic system
model sys to produce an equivalent discrete-time model sys1 with the
new sample time Ts (in seconds), using zero-order hold on the inputs.

sys1 = d2d(sys, Ts, 'method') uses the specified resampling
method 'method':

• 'zoh' — Zero-order hold on the inputs

• 'tustin' — Bilinear (Tustin) approximation

sys1 = d2d(sys, Ts, opts) resamples sys using the option set with
d2dOptions.

Tips • Use the syntax sys1 = d2d(sys, Ts, 'method') to resample sys
using the default options for'method'. To specify tustin resampling
with a frequency prewarp (formerly the 'prewarp' method), use the
syntax sys1 = d2d(sys, Ts, opts). See the d2dOptions reference
page.

• When sys is an identified (IDLTI) model, sys1 does not include the
estimated parameter covariance of sys. If you want to translate the
covariance while converting the model, use translatecov.

Examples Example 1

Consider the zero-pole-gain model

H z
z
z

() = −
−

0 7
0 5

.

.

with sample time 0.1 s. You can resample this model at 0.05 s by typing

H = zpk(0.7,0.5,1,0.1)

1-167

d2d

H2 = d2d(H,0.05)
Zero/pole/gain:
(z-0.8243)

(z-0.7071)

Sampling time: 0.05

The inverse resampling operation, performed by typing d2d(H2,0.1),
yields back the initial model H(z).

Zero/pole/gain:
(z-0.7)

(z-0.5)

Sampling time: 0.1

Example 2

Suppose you estimates a discrete-time model of a sample time
commensurate with the estimation data (Ts = 0.1 seconds). However,
your deployment application demands a faster sampling frequency (Ts
= 0.01 seconds).

load iddata1
sys = oe(z1, [2 2 1]);
sysFast = d2d(sys, 0.01, 'zoh')

bode(sys, sysFast)

See Also d2dOptions | c2d | d2c | upsample | translatecov

1-168

d2dOptions

Purpose Create option set for discrete-time resampling

Syntax opts = d2dOptions
opts = d2dOptions('OptionName', OptionValue)

Description opts = d2dOptions returns the default options for d2d.

opts = d2dOptions('OptionName', OptionValue) accepts one or
more comma-separated name/value pairs that specify options for the
d2d command. Specify OptionName inside single quotes.

This table summarizes the options that the d2d command supports.

Input
Arguments

Name-Value Pair Arguments

’Method’

Discretization method, specified as one of the following values:

'zoh' Zero-order hold, where d2d assumes the control inputs
are piecewise constant over the sampling period Ts.

'tustin' Bilinear (Tustin) approximation. By default, d2d
resamples with no prewarp. To include prewarp, use
the PrewarpFrequency option.

Default: 'zoh'

’PrewarpFrequency’

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit,
where TimeUnit is the time units, specified in the TimeUnit property,
of the resampled system. Takes positive scalar values. The prewarp
frequency must be smaller than the Nyquist frequency before and after
resampling. A value of 0 corresponds to the standard 'tustin' method
without prewarp.

Default: 0

1-169

d2dOptions

Examples Resample a discrete-time model using the 'tustin' method with
frequency prewarping.

Create the discrete-time transfer function

z

z z

+
+ +

1

12

h1 = tf([1 1], [1 1 1], 0.1); % 0.1s sampling time

To resample to a different sampling time, use d2dOptions to create
the option set.

opts = d2dOptions('Method', 'tustin', 'PrewarpFrequency', 20);
h2 = d2d(h1, 0.05, opts);

You can use opts to resample additional models using the same options.

See Also d2d

1-170

damp

Purpose Natural frequency; damping ratio

Syntax damp(sys)
[Wn,zeta] = damp(sys)
[Wn,zeta,P] = damp(sys)

Description damp(sys) calculates the damping ratio (also called damping factor) and
natural frequency of the poles of the linear model sys. When invoked
without output arguments, damp displays a table of the eigenvalues
of sys, along with the corresponding damping ratios and natural
frequencies. For discrete-time sys, the table includes the magnitude
of each pole and the damping ratio and frequencies of equivalent
continuous-time poles (see “Algorithms” on page 1-173). Frequencies
are expressed in units of the reciprocal of the TimeUnit property of sys.

[Wn,zeta] = damp(sys) returns vectors Wn and zeta containing the
natural frequencies ωn and damping ratios ζ of the poles of sys.

[Wn,zeta,P] = damp(sys) also returns a vector P containing the poles
of sys.

Input
Arguments

sys

Any linear dynamic system model.

Output
Arguments

Wn

Vector containing the natural frequencies of each pole of sys, in order
of increasing frequency. Frequencies are expressed in units of the
reciprocal of the TimeUnit property of sys.

If sys is a discrete-time model with specified sampling time, Wn contains
the natural frequencies of the equivalent continuous-time poles (see
“Algorithms” on page 1-173). If sys has unspecified sampling time
(Ts = -1), Wn is empty.

zeta

1-171

damp

Vector containing the damping ratios of each pole of sys, in the same
order as Wn.

If sys is a discrete-time model with specified sampling time, zeta
contains the damping ratios of the equivalent continuous-time poles
(see “Algorithms” on page 1-173). If sys has unspecified sampling time
(Ts = -1), zeta is empty.

P

Vector containing the poles of sys, in order of increasing natural
frequency. P is the same as the output of pole(sys), up to ordering.

Examples Natural Frequency, Damping Ratio, and Poles of a
Continuous-Time Transfer Function

Compute the natural frequency, damping ratio and poles of a
continuous-time transfer function.

Create the transfer function:

H s
s s

s s
() = + +

+ +
2 5 1

2 3

2

2

H = tf([2 5 1],[1 2 3]);

Display the natural frequencies, damping ratios, and poles of H.

damp(H)

Eigenvalue Damping Frequency

-1.00e+000 + 1.41e+000i 5.77e-001 1.73e+000
-1.00e+000 - 1.41e+000i 5.77e-001 1.73e+000

(Frequencies expressed in rad/seconds)

The system eigenvalues are the pole locations.

1-172

damp

Obtain vectors containing the natural frequencies and damping ratios
of the poles.

[Wn,zeta] = damp(H);

Natural Frequency, Damping Ratio and Poles of a Discrete-Time
Transfer Function

Compute the natural frequency, damping ratio and poles of a
discrete-time transfer function.

H = tf([5 3 1],[1 6 4 4],0.01);

Display information about the poles of H.

damp(H)

Eigenvalue Magnitude Damping Frequency

-3.02e-001 + 8.06e-001i 8.61e-001 7.74e-002 1.93e+002
-3.02e-001 - 8.06e-001i 8.61e-001 7.74e-002 1.93e+002
-5.40e+000 5.40e+000 -4.73e-001 3.57e+002

(Frequencies expressed in rad/seconds)

The system eigenvalues are the pole locations.

Obtain vectors containing the natural frequencies and damping ratios
of the poles.

[Wn,zeta] = damp(H);

Algorithms For a continuous-time linear system G(s), the natural frequency ωn of a
pole at s = R is given by:

ωn = |R|.

1-173

damp

For a discrete-time linear system G(z) with a pole at z = R, damp returns
the natural frequencies and damping ratios of equivalent continuous
time poles. The locations of the equivalent poles are given by

s
R

Ts

 ln
.

Ts is the sampling time.

The natural frequency, time constant, and damping ratio of the system
poles are defined as follows.

Continuous Time Discrete Time

Location of Pole Real or complex
eigenvalue at s = R

Real or complex
eigenvalue at z = R

Natural Frequency Wn = abs(R) Wn = abs(log(R))/Ts

Damping Ratio zeta = -cos(angle(R))zeta = -cos(angle(log(R)))

Time Constant • tau = 1/(zeta*Wn)
for zeta > 0

• Inf otherwise

• tau = 1/(zeta*Wn)
for zeta > 0

• Inf otherwise

See Also eig | esort | dsort | pole | pzmap | zero

1-174

data2state(idnlarx)

Purpose Map past input/output data to current states of nonlinear ARX model

Syntax X = data2state(MODEL,IOSTRUCT)
X = data2state(MODEL,DATA)

Description X = data2state(MODEL,IOSTRUCT)maps the input and output samples
in IOSTRUCT to the current states of MODEL, X. For a definition of the
states of idnlarx models, see “Definition of idnlarx States” on page
1-363. The data in IOSTRUCT is interpreted as past samples of data, so
that the returned state values must be interpreted as values at the
time immediately after the time corresponding to the last (most recent)
sample in the data.

X = data2state(MODEL,DATA) maps the input and output samples
from DATA to the current states, X, of the model.

Input
Arguments

• MODEL: idnlarx model.

• IOSTRUCT: Structure with fields Input and Output. Samples in
IOSTRUCT must be in the order of increasing time (the last row of
values corresponds to the most recent time). Each field contains
data samples corresponding to the past input and output of MODEL
respectively.

- Input: Matrix of NU columns, where NU is the number of inputs.
The number of rows can be equal to either of the following:

• Maximum input delay in MODEL (maximum across all input
variables).

• 1 to specify steady-state (constant) input values.

- Output: Matrix of NY columns, where NY is the number of outputs.
The number of rows can be equal to either of the following:

• Maximum input delay in MODEL (maximum across all output
variables).

• 1 to specify steady-state (constant) output values.

1-175

data2state(idnlarx)

• DATA: iddata object containing data samples. Samples in DATA must
be in the order of increasing time (the last row of values corresponds
to the most recent time). The number of samples in DATA must be
greater than or equal to the maximum delay in the model across
all input and output variables.

Note To determine maximum delay in each input and output channel
of MODEL, use the getDelayInfo command. For more information, see
the getDelayInfo reference page.

Output
Arguments

X is the state vector of MODEL corresponding to the time after the most
recent sample in the input data (IOSTRUCT or DATA).

Examples In this example you determine the current state of an idnlarx model.

1 Load your data and create a data object.

load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera', ...

'TimeUnit','s');

2 Estimate an idnlarx model from the data. The model has 6 inputs
and 2 outputs.

mw1 = nlarx(z,[ones(2,2),ones(2,6),ones(2,6)],wavenet);

3 Compute the maximum delays across all output variables in mw1.

MaxDelays = getDelayInfo(mw1);

4 Represent the past input and output samples:

IOData = struct('Input', ...
rand(max(MaxDelays(3+1:end)),6),...

'Output', ...

1-176

data2state(idnlarx)

rand(max(MaxDelays(1:3)),2));

5 Compute the current states of mw1 based on the past data in
IOSTRUCT.

X = data2state(mw1,IOData)

The previous command computes the state vector.

Note You can specify constant input levels with scalar values
(10,20,30,40,50,60) for the input variables by setting
IOSTRUCT.Input = [10, 20, 30, 40, 50, 60] instead of a matrix of
values.

See Also findop(idnlarx) | findstates(idnlarx) | getDelayInfo

1-177

db2mag

Purpose Convert decibels (dB) to magnitude

Syntax y = db2mag(ydb)

Description y = db2mag(ydb) returns the corresponding magnitude y for a given

decibel (dB) value ydb . The relationship between magnitude and

decibels is ydb y= ∗20 10log () .

See Also mag2db

1-178

dcgain

Purpose Low-frequency (DC) gain of LTI system

Syntax k = dcgain(sys)

Description k = dcgain(sys) computes the DC gain k of the LTI model sys.

Continuous Time
The continuous-time DC gain is the transfer function value at the
frequency s = 0. For state-space models with matrices (A, B, C, D),
this value is

K = D – CA–1B

Discrete Time

The discrete-time DC gain is the transfer function value at z = 1. For
state-space models with matrices (A, B, C, D), this value is

K = D + C (I – A)–1B

Tips The DC gain is infinite for systems with integrators.

Examples Example 1

To compute the DC gain of the MIMO transfer function

H s

s

s s

s
s
s

() =
−

+ +

+
+
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1
1

3
1

1
2
3

2

type

H = [1 tf([1 -1],[1 1 3]) ; tf(1,[1 1]) tf([1 2],[1 -3])];
dcgain(H)

to get the result:

1-179

dcgain

ans =
1.0000 -0.3333
1.0000 -0.6667

Example 2

To compute the DC gain of an identified process model, type;

load iddata1
sys = idproc('p1d');
syse = procest(z1, sys)

dcgain(syse)

The DC gain is stored same as syse.Kp.

See Also evalfr | norm

1-180

deadzone

Purpose Class representing dead-zone nonlinearity estimator for
Hammerstein-Wiener models

Syntax s=deadzone(ZeroInterval,I)

Description deadzone is an object that stores the dead-zone nonlinearity estimator
for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=deadzone(ZeroInterval,I) creates a dead-zone nonlinearity
estimator object, initialized with the zero interval I.

Use evaluate(d,x) to compute the value of the function defined by
the deadzone object d at x.

Tips Use deadzone to define a nonlinear function y F x= () , where F is a
function of x and has the following characteristics:

a x b F x
x a F x x a
x b

≤ < =
< = −
≥

()
()

0

 F x x b() = −

y and x are scalars.

Properties You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List ZeroInterval property value
get(d)
d.ZeroInterval

You can also use the set function to set the value of particular
properties. For example:

1-181

deadzone

set(d, 'ZeroInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

Property Name Description

ZeroInterval 1-by-2 row vector that specifies the initial zero interval of the
nonlinearity.
Default=[NaN NaN].

For example:

deadzone('ZeroInterval',[-1.5 1.5])

Examples Use deadzone to specify the dead-zone nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,deadzone([-1 1]),[]);

The dead-zone nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw

1-182

delayest

Purpose Estimate time delay (dead time) from data

Syntax nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)

Description Data is an iddata object containing the input-output data. It can also be
an idfrd object defining frequency-response data. Only single-output
data can be handled.

nk is returned as an integer or a row vector of integers, containing the
estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different
delays:

y t a y t a y t na

b u t nk b u t nb nk
na

nb

() () ... ()
() ... ()
+ − + + − =
− + + − − +

1

1

1
1 ++ e t()

The integer na is the order of the A polynomial (default 2). nb is a row
vector of length equal to the number of inputs, containing the order(s) of
the B polynomial(s) (default all 2).

nkmin and nkmax are row vectors of the same length as the number of
inputs, containing the smallest and largest delays to be tested. Defaults
are nkmin = 0 and nkmax = nkmin+20.

If nb, nkmax, and/or nkmin are entered as scalars in the multiple-input
case, all inputs will be assigned the same values.

maxtest is the largest number of tests allowed (default 10,000).

1-183

detrend

Purpose Subtract offset or trend from data signals

Syntax data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_d = detrend(data,1,brkp)

Description data_d = detrend(data) subtracts the mean value from each
time-domain or time-series signal data. data_d and data are iddata
objects.

data_d = detrend(data,Type) subtracts a mean value from each
signal when Type = 0, a linear trend (least-squares fit) when Type =
1, or a trend specified by a TrendInfo object when Type = T.

[data_d,T] = detrend(data,Type) stores the trend information as a
TrendInfo object T.

data_d = detrend(data,1,brkp) subtracts a piecewise linear
trend at one or more breakpoints brkp. brkp is a data index where
discontinuities between successive linear trends occur. When brkp
contains breakpoints that match the time vector, detrend subtracts a
continuous piecewise linear trend. You cannot store piecewise linear
trend information as an output argument.

Examples Subtract mean values from input and output signals and store the
trend information:

% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling interval of 0.08 sec.
data=iddata(y2,u2,0.08)
% Plot data on a time plot. Data has a nonzero mean.
plot(data)
% Remove the mean from the data.
[data_d,T] = detrend(data,0)
% Plot detrended data on the same plot.
hold on

1-184

detrend

plot(data_d)

Remove specified offset from input and output signals:

% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends.
T = getTrend(data)
% Assign offset values to the TrendInfo object.
T.InputOffset=5;
T.OutputOffset=5;
% Subtract offset from the data.
data_d = detrend(data,T)
% Plot detrended data on the same plot.
hold on
plot(data_d)

Subtract several linear trends that connect at three breakpoints [30
60 90]:

data = detrend(data,1,[30 60 90]);
% [30 60 90] are data indexes where breakpoints occur.

Subtract a mean value from the input signal and a V-shaped trend
from the output signal, such that the V peak occurs at the breakpoint
value of 119:

zd1 = z(:,:,[]); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];

See Also getTrend | | TrendInfo

How To • “Handling Offsets and Trends in Data”

1-185

diff

Purpose Difference signals in iddata objects

Syntax zdi = diff(z)
zdi = diff(z,n)

Description z is a time-domain iddata object. diff(z) and diff(z,n) apply this
command to each of the input/output signals in z.

1-186

etfe

Purpose Estimate empirical transfer functions and periodograms

Syntax g = etfe(data)
g = etfe(data,M)
g = etfe(data,M,N)

Description g = etfe(data) estimates a transfer function of the form:

y t G q u t v t() () () ()= +

data contains time- or frequency-domain input-output data or
time-series data:

• If data is time-domain input-output signals, g is the ratio of the
output Fourier transform to the input Fourier transform for the data.

For nonperiodic data, the transfer function is estimated at 128
equally-spaced frequencies [1:128]/128*pi/Ts.

For periodic data that contains a whole number of periods
(data.Period = integer), the response is computed at the
frequencies k*2*pi/period for k = 0 up to the Nyquist frequency.

• If data is frequency-domain input-output signals, g is the ratio of
output to input at all frequencies, where the input is nonzero.

• If data is time-series data (no input channels), g is the periodogram,
that is the normed absolute square of the Fourier transform, of
the data. The corresponding spectral estimate is normalized, as
described in “Spectrum Normalization” and differs from the spectrum
normalization in the Signal Processing Toolbox™ product.

g = etfe(data,M) applies a smoothing operation on the raw spectral
estimates using a Hamming Window that yields a frequency resolution
of about pi/M. The effect of M is similar to the effect of M in spa. M is
ignored for periodic data. Use this syntax as an alternative to spa for
narrowband spectra and systems that require large values of M.

1-187

etfe

g = etfe(data,M,N) specifies the frequency spacing for nonperiodic
data.

• For nonperiodic time-domain data, N specifies the frequency grid
[1:N]/N*pi/Ts rad/TimeUnit. When not specified, N is 128.

• For periodic time-domain data, N is ignored.

• For frequency-domain data, the N is fmin:delta_f:fmax, where
[fmin fmax] is the range of frequencies in data, and delta_f is
(fmax-fmin)/(N-1) rad/TimeUnit. When not specified, the response
is computed at the frequencies contained in data where input is
nonzero.

Input
Arguments

data - Estimation data
iddata

Estimation data, specified as an iddata object. The data can be time- or
frequency-domain input/output signals or time-series data.

M - Frequency resolution
[] (default) | Positive scalar

Frequency resolution, specified as a positive scalar.

N - Frequency spacing
128 for nonperiodic time-domain data (default) | Positive scalar

Frequency spacing, specified as a positive scalar. For frequency-domain
data, the default frequency spacing is the spacing inherent in the
estimation data.

Output
Arguments

g - Transfer function estimate
idfrd

Transfer function estimate, returned as an idfrd model.

1-188

etfe

Examples Compare an Empirical Transfer Function to a Smoothed
Spectral Estimate

Load estimation data.

load iddata1 z1;

Estimate empirical transfer function and smoothed spectral estimate.

ge = etfe(z1);
gs = spa(z1);

Compare the two models on a Bode plot.

bode(ge,gs)

1-189

etfe

Generate Empirical Transfer Function Using Periodic Input

Generate a periodic input, simulate a system with it, and compare the
frequency response of the estimated model with the original system
at the excited frequency points.

Generate a periodic input signal and output signal using simulation.

m = idpoly([1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);

Estimate an empirical transfer function.

me = etfe([y u])

Compare the empirical transfer function with the original model.

bode(me,'b*',m,'r')

1-190

etfe

Apply Smoothing Operation on Empirical Transfer Function
Estimate

Perform a smoothing operation on raw spectral estimates using a
Hamming Window and compare the responses.

Load data.

load iddata1

Estimate empirical transfer functions with and without the smoothing
operation.

ge1 = etfe(z1);
ge2 = etfe(z1,32);

Compare the models on a Bode plot.

bode(ge1,ge2)

1-191

etfe

ge2 is smoother than ge1 because of the effect of the smoothing
operation.

Compare Effect of Frequency Spacing on Empirical Transfer
Function Estimate

Estimate empirical transfer functions with low- and high-frequency
spacings and compare the responses.

Load data.

load iddata9

Estimate empirical transfer functions with low and high frequency
spacings.

1-192

etfe

ge1=etfe(z9,[],32);
ge2=etfe(z9,[],512);

Plot the output power spectrum of the two models.

spectrum(ge1,'b.-',ge2,'g')

See Also bode | freqresp | idfrd | nyquist | spa | spafdr |
impulseest | spectrum

Related
Examples

• “How to Estimate Frequency-Response Models at the Command Line”

Concepts • “What Is a Frequency-Response Model?”

1-193

evalfr

Purpose Evaluate frequency response at given frequency

Syntax frsp = evalfr(sys,f)

Description frsp = evalfr(sys,f) evaluates the transfer function of the TF, SS,
or ZPK model sys at the complex number f. For state-space models
with data (A, B, C, D), the result is

H(f) = D + C (fI – A)–1B

evalfr is a simplified version of freqrespmeant for quick evaluation of
the response at a single point. Use freqresp to compute the frequency
response over a set of frequencies.

Examples Example 1

To evaluate the discrete-time transfer function

H z
z

z z
() = −

+ +
1

12

at z = 1 + j, type

H = tf([1 -1],[1 1 1],-1);
z = 1+j;
evalfr(H,z)

to get the result:

ans =
2.3077e-01 + 1.5385e-01i

Example 2

To evaluate the frequency response of a continuous-time IDTF model at
frequency w = 0.1 rad/s, type:

sys = idtf(1,[1 2 1]);

1-194

evalfr

w = 0.1;
s = 1j*w;
evalfr(sys, s)

The result is same as freqresp(sys, w).

Limitations The response is not finite when f is a pole of sys.

See Also bode | freqresp | sigma

1-195

evaluate

Purpose Value of nonlinearity estimator at given input

Syntax value = evaluate(nl,x)

Arguments nl
Nonlinearity estimator object.

x
Value at which to evaluate the nonlinearity.

If nl is a single nonlinearity estimator, then x is a 1-by-nx row
vector or an nv-by-nx matrix, where nx is the dimension of the
regression vector input to nl (size(nl)) and nv is the number of
points where nl is evaluated.

If nl is an array of ny nonlinearity estimators, then x is a 1-by-ny
cell array of nv-by-nx matrices.

Description value = evaluate(nl,x) computes the value of a nonlinear estimator
object of type customnet, deadzone, linear, neuralnet, pwlinear,
saturation, sigmoidnet, treepartition, or wavenet.

Examples The following syntax evaluates the nonlinearity of an estimated
nonlinear ARX model m:

value = evaluate(m.Nonlinearity,x)

where m.Nonlinearity accesses the nonlinearity estimator of the
nonlinear ARX model.

See Also idnlarx | idnlhw

1-196

fcat

Purpose Concatenate FRD models along frequency dimension

Syntax sys = fcat(sys1,sys2,...)

Description sys = fcat(sys1,sys2,...) takes two or more frd models and
merges their frequency responses into a single frd model sys. The
resulting frequency vector is sorted by increasing frequency. The
frequency vectors of sys1, sys2,... should not intersect. If the
frequency vectors do intersect, use fdel to remove intersecting data
from one or more of the models.

See Also fdel | fselect | interp | frd | idfrd

1-197

fdel

Purpose Delete specified data from frequency response data (FRD) models

Syntax sysout = fdel(sys, freq)

Description sysout = fdel(sys, freq) removes from the frd model sys the data
nearest to the frequency values specified in the vector freq.

Tips • Use fdel to remove unwanted data (for example, outlier points) at
specified frequencies.

• Use fdel to remove data at intersecting frequencies from frd models
before merging them with fcat. fcat produces an error when you
attempt to merge frd models that have intersecting frequency data.

• To remove data from an frd model within a range of frequencies,
use fselect.

Input
Arguments

sys

frd model.

freq

Vector of frequency values.

Output
Arguments

sysout

frd model containing the data remaining in sys after removing the
frequency points closest to the entries of freq.

Examples Remove selected data from a frd model. In this example, first obtain an
frd model:

sys = frd(tf([1],[1 1]), logspace(0,1,10))

Frequency(rad/s) Response
---------------- --------

1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.4841i

1-198

fdel

1.6681 0.2644 - 0.4410i
2.1544 0.1773 - 0.3819i
2.7826 0.1144 - 0.3183i
3.5938 0.0719 - 0.2583i
4.6416 0.0444 - 0.2059i
5.9948 0.0271 - 0.1623i
7.7426 0.0164 - 0.1270i

10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

The following commands remove the data nearest 2, 3.5, and 6 rad/s
from sys.

freq = [2, 3.5, 6];
sysout = fdel(sys, freq)

Frequency(rad/s) Response
---------------- --------

1.0000 0.5000 - 0.5000i
1.2915 0.3748 - 0.4841i
1.6681 0.2644 - 0.4410i
2.7826 0.1144 - 0.3183i
4.6416 0.0444 - 0.2059i
7.7426 0.0164 - 0.1270i

10.0000 0.0099 - 0.0990i

Continuous-time frequency response.

You do not have to specify the exact frequency of the data to remove.
fdel removes the data nearest to the specified frequencies.

See Also fcat | fselect | frd | idfrd

1-199

feedback

Purpose Identify possible feedback data

Syntax [fbck,fbck0,nudir] = feedback(Data)

Description Data is an iddata set with Ny outputs and Nu inputs.

fbck is an Ny-by-Nu matrix indicating the feedback. The ky,ku entry
is a measure of feedback from output ky to input ku. The value is a
probability P in percent. Its interpretation is that if the hypothesis that
there is no feedback from output ky to input ku were tested at the level
P, it would have been rejected. An intuitive but technically incorrect
way of thinking about this is to see P as “the probability of feedback.”
Often only values above 90% are taken as indications of feedback. When
fbck is calculated, direct dependence at lag zero between u(t) and y(t) is
not regarded as a feedback effect.

fbck0: Same as fbck, but direct dependence at lag 0 between u(t) and
y(t) is viewed as feedback effect.

nudir: A vector containing those input numbers that appear to have a
direct effect on some outputs, that is, no delay from input to output.

See Also advice | iddata

1-200

ffplot

Purpose Compute and plot frequency response magnitude and phase for linear
frequencies

Note ffplot will be removed in a future release. Use bode or
bodeplot instead.

Syntax ffplot(m)
ffplot(m,w)
ffplot(m,'noise')
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)

Description ffplot(m) plots a frequency response plot for the model m, which can
be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency
response is a function of linear frequencies in units of inverse time
(stored as the TimeUnit model property). The default frequency values
are determined from the model dynamics. For time series spectra,
phase plots are omitted. For MIMO models, press Enter to view the
next plot in the sequence of different I/O channel pairs, annotated using
the InputNames and OuputNames model properties.

ffplot(m,w) plots a frequency response plot at specified frequencies w
in inverse time units, which can be:

• A vector of values.

• {wmin,wmax}, which specifies 100 linearly spaced frequency values
ranging from a minimum value wmin and a maximum value wmax.

• {wmin,wmax,np}, which specifies np linearly spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies
and can only limit the frequencies range for the internally stored
frequencies using {wmin,wmax}.

1-201

ffplot

ffplot(m,'noise') plots a frequency response plot of the output noise
spectra when the model contains noise spectrum information.

ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill') plots
a frequency response plot for several models. sd specifies the confidence
region as a positive number that represents the number of standard
deviations. The argument 'fill' indicates that the confidence region
is color filled. mode = 'same' displays all I/O channels in the same
plot. Set ap = 'A' to show only amplitude plots, or ap = 'P' to show
only phase plots.

[mag,phase,w] = ffplot(m) computes the magnitude mag and
phase values of the frequency response, which are 3-D arrays with
dimensions (number of outputs)-by-(number of inputs)-by-(length of
w). w specifies the frequency values for computing the response even
if you did not specify it as an input. For SISO systems, mag(1,1,k)
and phase(1,1,k) are the magnitude and phase (in degrees) at the
frequency w(k). For MIMO systems, mag(i,j,k) is the magnitude of
the frequency response at frequency w(k) from input j to output i, and
similarly for phase(i,j,k). When m is a time series, mag is its power
spectrum and phase is zero.

[mag,phase,w,sdmag,sdphase] = ffplot(m) computes the standard
deviations of the magnitude sdmag and the phase sdphase. sdmag is an
array of the same size as mag, and sdphase is an array of the same
size as phase.

See Also bode | etfe | freqresp | idfrd | nyquist | spa | spafdr

1-202

fft

Purpose Transform iddata object to frequency domain data

Syntax Datf = fft(Data)
Datf = fft(Data,N)
Datf = fft(Data,N,'complex')

Description If Data is a time-domain iddata object with real-valued signals and with
constant sampling interval Ts, Datf is returned as a frequency-domain
iddata object with the frequency values equally distributed from
frequency 0 to the Nyquist frequency. Whether the Nyquist frequency
actually is included or not depends on the signal length (even or odd).
Note that the FFTs are normalized by dividing each transform by the
square root of the signal length. That is in order to preserve the signal
power and noise level.

In the default case, the length of the transformation is determined by
the signal length. A second argument N will force FFT transformations
of length N, padding with zeros if the signals in Data are shorter and
truncating otherwise. Thus the number of frequencies in the real signal
case will be N/2 or (N+1)/2. If Data contains several experiments, N can
be a row vector of corresponding length.

For real signals, the default is that Datf only contains nonnegative
frequencies. For complex-valued signals, negative frequencies are also
included. To enforce negative frequencies in the real case, add a last
argument, 'Complex'.

See Also iddata | ifft | spa

1-203

findop(idnlarx)

Purpose Compute operating point for nonlinear ARX model

Syntax [X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

Description [X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlarx model. For more information about the
states of an idnlarx model, see “Definition of idnlarx States” on page
1-363.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS,'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS,...,PVPairs) specifies property-value pairs for setting
algorithm options.

Input
Arguments

• SYS: idnlarx (nonlinear ARX) model.

• 'steady': Computes operating point using steady-state input and
output levels.

• 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

• InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown.

1-204

findop(idnlarx)

• OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

• SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlarx) for more information.

• T: Simulation snapshot time at which to compute the operating point.

• UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

• X0: Initial states for model simulation.

Default: Zero.

• PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

Output
Arguments

• X: Operating point state values.

• U: Operating point input value.

• REPORT: Structure containing the following fields:

- SearchMethod: String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- WhyStop: String describing why the estimation stopped.

- Iterations: Number of estimation iterations.

- FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

- FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the ∞ -norm of the gradient vector.

- SignalLevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.

1-205

findop(idnlarx)

Algorithms findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS,'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

• All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

• All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

• The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

To compute the states, X, and the input, U, of the steady-state operating
point, findop uses the algorithm specified in the SearchMethod
property of MODEL.Algorithm to minimize the norm of the error e(t) =
y(t)-f(x(t), u(t)), where f is the nonlinearity estimator, x(t) are the model
states, and u(t) is the input.

The algorithm uses the following independent variables for
minimization:

• Unknown (unspecified) inputs

• Output signals

1-206

findop(idnlarx)

Because the states of a nonlinear ARX (idnlarx) model are delayed
samples of the input and output variables, the values of all the states
are the constant values of the corresponding steady-state inputs and
outputs. For more information about the definition of nonlinear ARX
model states, see “Definition of idnlarx States” on page 1-363.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =
findop(SYS,'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm passes the input and output samples to the data2state
command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform
numerical optimization.

Examples In this example, you compute the operating point of an idnlarx model
for a steady-state input level of 1.

1 Estimate an idnlarx model from sample data iddata2.

load iddata2;
M = nlarx(z2,[4 3 2],'wavenet');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M,'steady',1,NaN)

See Also data2state(idnlarx) | operspec(idnlarx) | sim(idnlarx)

1-207

findop(idnlhw)

Purpose Compute operating point for Hammerstein-Wiener model

Syntax [X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,X0)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)

Description [X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes
operating-point state values, X, and input values, U, from steady-state
specifications for an idnlhw model. For more information about the
states of an idnlhw model, see “idnlhw States” on page 1-397.

[X,U] = findop(SYS,SPEC) computes the equilibrium operating point
using the specifications in the object SPEC. Whereas the previous
command only lets you specify the input and output level, SPEC provides
additional specification for computing the steady-state operating point.

[X,U] = findop(SYS,'snapshot',T,UIN,X0) computes the operating
point at a simulation snapshot of time T using the specified input and
initial state values.

[X,U,REPORT] = findop(...) creates a structure, REPORT, containing
information about the algorithm for computing an operating point.

findop(SYS,...,PVPairs) specifies property-value pairs for setting
algorithm options.

Input
Arguments

• SYS: idnlhw (Hammerstein-Wiener) model.

• 'steady': Computes operating point using steady-state input and
output levels.

• 'snapshot': Computes operating point at simulating snapshot of
model SYS at time T.

• InputLevel: Steady-state input level for computing operating point.
Use NaN when the value is unknown. Do not enter OutputLevel
when InputLevel does not contain any NaN values.

1-208

findop(idnlhw)

• OutputLevel: Steady-state output level for computing the operating
point. Use NaN when the value is unknown.

• SPEC: Operating point specifications object. Use SPEC =
OPERSPEC(SYS) to construct the SPEC object for model SYS. Then,
configure SPEC options, such as signal bounds, known values, and
initial guesses. See operspec(idnlhw) for more information.

• T: Simulation snapshot time at which to compute the operating point.

• UIN: Input for simulating the model. UIN is a double matrix or an
iddata object. The number of input channels in UIN must match
the number of SYS inputs.

• X0: Initial states for model simulation.

Default: Zero.

• PVPairs: Property-value pairs for customizing the model Algorithm
property fields, such as SearchMethod, MaxSize, and Tolerance.

Output
Arguments

• X: Operating point state values.

• U: Operating point input value.

• REPORT: Structure containing the following fields:

- SearchMethod: String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- WhyStop: String describing why the estimation stopped.

- Iterations: Number of estimation iterations.

- FinalCost: Final value of the sum of squared errors that the
algorithm minimizes.

- FirstOrderOptimality: Measure of the gradient of the search
direction at the final parameter values when the search algorithm
terminates. It is equal to the ∞ -norm of the gradient vector.

- SignalLevels: Structure containing fields Input and Output,
which are the input and output signal levels of the operating point.

1-209

findop(idnlhw)

Algorithms findop computes the operating point from steady-state operating point
specifications or at a simulation snapshot.

Computing the Operating Point from Steady-State
Specifications

You specify to compute the steady-state operating point by calling
findop in either of the following ways:

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)

When you use the syntax [X,U] =
findop(SYS,'steady',InputLevel,OutputLevel), the algorithm
assumes the following operating-point specifications:

• All finite input values are fixed values. Any NaN values specify an
unknown input signal with the initial guess of 0.

• All finite output values are initial guess values. Any NaN values
specify an unknown output signal with the initial guess of 0.

• The minimum and maximum bounds have default values (-/+ Inf) for
both Input and Output properties in the specification object.

Using the syntax [X,U] = findop(SYS,SPEC), you can specify
additional information, such as the minimum and maximum constraints
on the input/output signals and whether certain inputs are known
(fixed).

findop uses a different approach to compute the steady-state operating
point depending on how much information you provide for this
computation:

• When you specify values for all input levels (no NaN values).
For a given input level, U, the equilibrium state values are X =
inv(I-A)*B*f(U), where [A,B,C,D] = ssdata(model.LinearModel),
and f() is the input nonlinearity.

• When you specify known and unknown input levels. findop
uses numerical optimization to minimize the norm of the error

1-210

findop(idnlhw)

and compute the operating point. The total error is the union of
contributions from e1 and e2 , e(t) = (e1(t)e2(t)), such that:

- e1 applies for known outputs and the algorithm minimizes e1 = y-
g(L(x,f(u))), where f is the input nonlinearity, L(x,u) is the linear
model with states x, and g is the output nonlinearity.

- e2 applies for unknown outputs and the error is a measure of
whether these outputs are within the specified minimum and
maximum bounds. If a variable is within its specified bounds, the
corresponding error is zero. Otherwise, the error is equal to the
distance from the nearest bound. For example, if a free output
variable has a value z and its minimum and maximum bounds are
L and U, respectively, then the error is e2= max[z-U, L-z, 0].

The independent variables for the minimization problem are the
unknown inputs. In the error definition e, both the input u and the
states x are free variables. To get an error expression that contains
only unknown inputs as free variables, the algorithm findop specifies
the states as a function of inputs by imposing steady-state conditions:
x = inv(I-A)*B*f(U), where [A,B,C,D] are state-space parameters
corresponding to the linear model L(x,u). Thus, substituting x =
inv(I-A)*B*f(U) into the error function results in an error expression
that contains only unknown inputs as free variables computed by the
optimization algorithm.

Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] =
findop(SYS,'snapshot',T,UIN,X0), the algorithm simulates the
model output until the snapshot time, T. At the snapshot time, the
algorithm computes the inputs for the linear model block of the
Hammerstein-Wiener model (LinearModel property of the idnlhw
object) by transforming the given inputs using the input nonlinearity: w
= f(u). findop uses the resulting w to compute x until the snapshot time
using the following equation: x(t+1) = Ax(t) + Bw(t), where [A,B,C,D]
= ssdata(model.LinearModel).

1-211

findop(idnlhw)

Note For snapshot-based computations, findop does not perform
numerical optimization.

Examples In this example, you compute the operating point of an idnlhw model
for a steady-state input level of 1.

1 Estimate an idnlhw model from sample data iddata2.

load iddata2;
M = nlhw(z2,[4 3 2],'wavenet','pwl');

2 Compute the steady-state operating point for an input level of 1.

x0 = findop(M,'steady',1,NaN)

See Also findstates(idnlhw) | operspec(idnlhw) | sim(idnlhw)

1-212

findstates(idParametric)

Purpose Estimate initial states of identified linear state-space model from data

Syntax x0 = findstates(sys,data)
x0 = findstates(sys,data,K)
x0 = findstates(sys,data,K,opt)

Description x0 = findstates(sys,data) estimates the initial state values of a
state-space model, sys, to maximize the least squares fit between the
measured output data, data, and the model response.

x0 = findstates(sys,data,K) specifies the prediction horizon, K, for
computing the response of sys.

x0 = findstates(sys,data,K,opt) estimates the initial state using
the option set, opt, to specify initial condition constraints, signal
offsets, etc.

Input
Arguments

sys

Identified linear state-space model.

Specify sys as an idss or idgrey model.

data

Input-output data.

Specify data as an iddata object with input/output dimensions that
match sys.

data can be a frequency-domain iddata object. Ideally, the frequency
vector of data should be symmetric about the origin.

If you are converting time-domain data into frequency-domain data, use
fft. Use the 'compl' input argument with fft and ensure that there is
sufficient zero padding. Note that for an N-point fft, the input/output
signals are scaled by 1/sqrt(N). Therefore, the estimated x0 vector is
also scaled by this factor. So, scale your data appropriately when you
compare x0 between the time-domain and frequency-domain.

1-213

findstates(idParametric)

K

Prediction horizon for computing the response of sys.

Specify K as a positive integer between 1 and Inf. The most common
values used are:

• K=1 — Minimizes the 1-step prediction error. That is, the 1–step
ahead prediction response of sys is compared to the output signals
in data to determine x0.

• K=Inf — Minimizes the simulation error. That is, the difference
between the measured output, data.y, and the simulated response
of sys to the measured input data, data.u.

For continuous-time models, specify K as either 1 or Inf.

For continuous-time frequency-domain data, specify K as Inf.

Default: 1 (for all data except continuous-time frequency-domain
data)

opt

Option set.

opt is an options set that allows you to constrain the initial state,
remove signal offsets, etc.

Use findstatesOptions to create the options set.

Output
Arguments

x0

Estimated initial state.

For multi-experiment data, x0 is a matrix with one column for each
experiment.

Examples Estimate Initial States of State-Space Model

Estimate an idss model and simulate it such that the response of the
estimated model matches the estimation data’s output signal as closely
as possible.

1-214

findstates(idParametric)

Load sample data.

load iddata1 z1; % estimation data z1;

Estimate a linear model from the data.

model = ssest(z1,2);

Estimate the value of the initial states to best fit the measured output
z1.y.

x0est = findstates(model,z1,Inf);

Simulate the model.

opt = simOptions('InitialCondition',x0est)
sim(model,z1.u,opt)

See Also findstatesOptions | idpar | pe | compare | sim | predict
| forecast | findstates(idnlarx) | findstates(idnlhw) |
findstates(idnlgrey) | ssest

1-215

findstates(idnlarx)

Purpose Estimate initial states of nonlinear ARX model from data

Syntax X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,X0INIT)
X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM)
X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM,PVPairs)
[X0, REPORT] = findstates(...)

Description X0 = findstates(MODEL,DATA) estimates the initial states of
an idnlarx model that minimize the error between the output
measurements in DATA and the predicted output of the model. The states
of an idnlarx model are defined as the delayed samples of input and
output variables. For more information about the definition of states for
idnlarx models, see “Definition of idnlarx States” on page 1-363.

X0 = findstates(MODEL,DATA,X0INIT) specifies an initial guess for
estimating the initial states.

X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM) allows
switching between prediction-error (default) and simulation-error
minimization.

X0 = findstates(MODEL,DATA,X0INIT,PRED_OR_SIM,PVPairs)
lets you specify the algorithm properties that control the numerical
optimization process as property-value pairs.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

Input
Arguments

• MODEL: idnlarx model.

• DATA: iddata object from which to estimate the initial states of MODEL.

• X0INIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL (sum(getDelayInfo(MODEL))).

• PRED_OR_SIM: Specifies minimization criteria using one of the
following values:

1-216

findstates(idnlarx)

- 'prediction': (Default) Estimation of initial states by
minimizing the difference between the measured output data and
1-step-ahead predicted response of the model.

- 'simulation': Estimation of initial states by minimizing the
difference between the measured output and the simulated
response of the model. This estimation algorithm can be slower
than 'prediction'.

• PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL.Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.

Output
Arguments

• X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

• REPORT: Structure containing the following fields:

- 'EstimationCriterion': String containing the minimization
method used.

- 'SearchMethod': String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- 'WhyStop': String describing why the estimation was stopped.

- 'Iterations': Number of iterations carried out during estimation.

- 'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

- 'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the ∞ -norm of the gradient
vector.

1-217

findstates(idnlarx)

Examples Estimating Initial States

In this example, you use sample data z1 to create a nonlinear ARX
model. You use findstates to compute the initial states of the model
such that the difference between the predicted output of the model and
the output data in z2 is minimized.

1 Load the sample data and create two data objects z1 and z2.

load twotankdata
% Create data objects z1 and z2.
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

2 Estimate the idnlarx model.

% Estimate a nonlinear ARX model from data in z1.
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

3 Estimate the initial states of the model.

% Find the initial states X0 of mw1 that minimize
% the error between the output data of z2 and the
% simulated output of mw1.
X0 = findstates(mw1,z2,[],'sim')

Estimating Initial States for Multiple-Experiment Data

In this example, you estimate the initial states for each data set in a
multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:

% Create a multi-experiment data set.
zm = merge(z1,z2);

1-218

findstates(idnlarx)

2 Estimate the initial states for each experiment in the data set, such
that the one-step-ahead prediction error is minimized for each data
set.

% Estimate initial states for each data set in zm.
X0 = findstates(mw1,zm)

See Also data2state(idnlarx) | getDelayInfo | findop(idnlarx) |
findstates(idParametric) | findstates(idnlhw)

1-219

findstates(idnlgrey)

Purpose Estimate initial states of nonlinear grey-box model from data

Syntax X0 = findstates(NLSYS,DATA);
[X0,ESTINFO] = findstates(NLSYS,DATA);
[X0,ESTINFO] = findstates(NLSYS,DATA,X0INIT);

Description X0 = findstates(NLSYS,DATA); estimates the initial states of an
idnlgrey model from given data. For more information about the states
of idnlgrey models, see “Definition of idnlgrey States” on page 1-383.

[X0,ESTINFO] = findstates(NLSYS,DATA); returns basic information
about the estimation.

[X0,ESTINFO] = findstates(NLSYS,DATA,X0INIT); specifies an
initial guess for X0.

Input
Arguments

• NLSYS: idnlgrey model whose output is to be predicted.

• DATA: Input/output data DATA = [Y U], where U and Y are the
following:

- U: Input data that can be given either as an iddata object or as a
matrix U = [U1 U2 ...Um], where the kth column vector is input
Uk

- Y: Either an iddata object or a matrix of outputs (with as many
columns as there are outputs).

Note For time-continuous idnlgrey models, DATA passed as a
matrix will cause the data sample interval Ts to be assumed to be
equal to 1.

• X0INIT: Initial state strategy to use:

- 'zero': Use zero initial state and estimate all states
(NLSYS.InitialStates.Fixed is thus ignored). Notice that all
states are estimated, whereas they are fixed in predict.

1-220

findstates(idnlgrey)

- 'estimate': NLSYS.InitialStates determines the
values of the states, but all initial states are estimated
(NLSYS.InitialStates.Fixed is thus ignored).

- 'model': (Default) NLSYS.InitialStates determines the values
of the initial states, which initial states to estimate, as well as
their maximum and minimum values.

- vector/matrix: Column vector of appropriate length to be used
as an initial guess for initial states. For multiple experiment
DATA, X0INIT may be a matrix whose columns give different
initial states for each experiment. With this option, all
initial states are estimated (and not fixed as in predict)
(NLSYS.InitialStates.Fixed is thus ignored).

- struct array: Nx-by-1 structure array with fields:

• Name: Name of the state (a string).

• Unit: Unit of the state (a string).

• Value: Value of the states (a finite real 1-by-Ne vector, where Ne
is the number of experiments).

• Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

• Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

• Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable
for all states) specifying whether the initial state is fixed or not.

Output
Arguments

• X0: Matrix containing the initial states. In the single experiment
case it is a column vector of length Nx. For multi-experiment data, X0
is a matrix with as many columns as there are experiments.

• ESTINFO: Structure or Ne-by-1 structure array containing basic
information about the estimation result (some of the fields normally
stored in NLSYS.EstimationInfo). For multi-experiment data,

1-221

findstates(idnlgrey)

ESTINFO is an Ne-by-1 structure array with elements providing initial
state estimation information related to each experiment.

Examples Estimating Individual Initial States Selectively

In this example you estimate the initial states of a model selectively,
fixing the first state and allowing the second state of the model to be
estimated. First you create a model from sample data and set the Fixed
property of the model such that the second state is free and the first
is fixed.

1 Specify the file describing the model structure, the model orders, and
model parameters.

% Specify the file describing the model structure:
FileName = 'dcmotor_m';
% Specify the model orders [ny nu nx]
Order = [2 1 2];
% Specify the model parameters
% (see idnlgreydemo1 for more information)
Parameters = [0.24365; 0.24964];

2 Estimate the model parameters and set the model properties:

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage','OutputName', ...

{'Angular position', 'Angular velocity'});

3 Free the second state while keeping the first one fixed.

setinit(nlgr,'Fixed',{1 0});

4 Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident',...
'iddemos','data','dcmotordata'));

z = iddata(y,u,0.1,'Name','DC-motor',...
'InputName', 'Voltage', 'OutputName',...
{'Angular position','Angular velocity'});

1-222

findstates(idnlgrey)

5 Estimate the free states of the model.

[X0,EstInfo] = findstates(nlgr,z)

Estimating Initial States Starting from States Stored in Model

This example shows how you can estimate all of the initial states,
starting from the initial state 0, then from the initial states stored in
the model nlgr, and finally using a numerical initial states vector as
the initial guess.

1 Estimate all the initial states starting from 0.

X0 = findstates(nlgr,z,'zero');

2 Estimate the free initial states specified by nlgr, starting from the
initial state stored in nlgr.

X0 = findstates(nlgr, z, 'mod');

3 Estimate all the initial states, starting from an initial state vector
that you specify.

nlgr.Algorithm.Display = 'full';

% Starting from an initial state vector [10;10]
X0 = findstates(nlgr,z,[10;10])

Advanced Use of findstates(idnlgrey)

The following example shows advanced use of findstates. Here you
estimate states for multi-experiment data, such that the states of model
nlgr are estimated separately for each experiment. After creating
a 3-experiment data set z3, you estimate individual initial states
separately.

1 Create a three-experiment data set.

1-223

findstates(idnlgrey)

z3 = merge(z, z, z); % 3-experiment data

2 Fix some initial states and only estimate the free initial states
starting of with the initial state in nlgr. This means that both
elements of state vector 1 will be estimated, that no state of the
second state vector will be estimated, and that only the first state of
state vector 3 is estimated.

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

3 Specify which initial states to fix, and set the Display property of
Algorithm to 'full'.

nlgr.InitialStates(1).Fixed = [true false true];
nlgr.InitialStates(2).Fixed = [true false false];
nlgr.Algorithm.Display = 'full';

4 Estimate the initial states and obtain information about the
estimation.

[X0, EstInfo] = findstates(nlgr, z3);

See Also findstates(idnlarx) | findstates(idnlhw) | predict | sim

1-224

findstates(idnlhw)

Purpose Estimate initial states of nonlinear Hammerstein-Wiener model from
data

Syntax X0 = findstates(MODEL,DATA)
X0 = findstates(MODEL,DATA,X0INIT)
X0 = findstates(MODEL,DATA,X0INIT,PVPairs)
[X0, REPORT] = findstates(...)

Description X0 = findstates(MODEL,DATA) estimates the initial states of an
idnlhw model from given data. The states of an idnlhw model are
defined as the states of its embedded linear model (Model.LinearModel).
For more information about the states of idnlhw models, see “idnlhw
States” on page 1-397.

X0 = findstates(MODEL,DATA,X0INIT) specifies an initial guess for
value of X0 using X0INIT.

X0 = findstates(MODEL,DATA,X0INIT,PVPairs) specifies
property-value pairs representing the algorithm properties that control
the numerical optimization process.

[X0, REPORT] = findstates(...) creates a report to summarize
results of numerical optimization that is performed to search for the
model states.

Input
Arguments

• MODEL: idnlhw model.

• DATA: iddata object from which to estimate the initial states of MODEL.

• X0INIT: Initial guess for value of X0. Must be a vector of length equal
to the number of the states of MODEL.

• PVPairs: Property-value pairs that specify the algorithm properties
that control numerical optimization process. By default, algorithm
properties are read from the Algorithm property of MODEL. You can
override MODEL.Algorithm properties using property-value pairs.
For example you might set SearchMethod, MaxSize, Tolerance, and
Display.

1-225

findstates(idnlhw)

Output
Arguments

• X0: Estimated initial state vector corresponding to time DATA.TStart.
For multi-experiment data, X0 is a matrix with as many columns
as there are experiments.

• REPORT: Structure containing the following fields:

- 'EstimationCriterion': String containing the minimization
method used.

- 'SearchMethod': String indicating the value of the SearchMethod
property of MODEL.Algorithm.

- 'WhyStop': String describing why the estimation was stopped.

- 'Iterations': Number of iterations carried out during estimation.

- 'FinalCost': The final value of the sum of squared errors that
the search method attempts to minimize

- 'FirstOrderOptimality': Measure of the gradient of the search
direction at the final value of the parameter set when the search
algorithm terminates. It is equal to the ∞ -norm of the gradient
vector.

Examples In this example, you create an idnlarx model from sample data and
estimate initial states using another data set. Next you jointly estimate
the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z1 and z2.

load twotankdata

z = iddata(y, u, 0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

2 Estimate an idnlhw model from data.

m1=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')

3 Estimate the initial states of m1 using data z2.

1-226

findstates(idnlhw)

% Estimate initial states. View estimation trace and use
% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[],'MaxIter',5,'Display','on')

4 Estimate states using multiple-experiment data. There are separate
sets of initial states for each experiment. The states of all data
experiments are jointly estimated, and X0 is returned as a matrix
with as many columns as there are data experiments.

zm = merge(z1,z2);
X0 = findstates(m1, zm)

See Also findstates(idnlarx) | findstates(idParametric) |
findop(idnlhw)

1-227

findstatesOptions

Purpose Option set for findstates

Syntax opt = findstatesOptions
opt = findstatesOptions(Name,Value)

Description opt = findstatesOptions creates the default options set for
findstates(idParametric).

opt = findstatesOptions(Name,Value) creates an option set with
the options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialState’

Specify how the initial states are handled.

InitialState requires one of the following:

• 'e' — Estimate initial state such that the prediction error for
observed output is minimized.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients. Use this option for discrete-time models only.

• x0obj— Specification object created using idpar. Use this object for
discrete-time state-space models only and when K is 1 or Inf. Use
x0obj to impose constraints on the initial states by fixing their value
or specifying minimum/maximum bounds.

Default: 'e'

’InputOffset’

1-228

findstatesOptions

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Weight of output for initial condition estimation.

OutputWeight requires one of the following:

• []— No weighting is used. This option is the same as using eye(Ny)
for the output weight, where Ny is the number of outputs.

• 'noise'— Inverse of the noise variance stored with the model.

1-229

findstatesOptions

• Matrix — A positive, semidefinite matrix of dimension Ny-by-Ny,
where Ny is the number of outputs.

Default: []

Output
Arguments

opt

Option set containing the specified options for
findstates(idParametric).

Examples Create Default Options Set for State Identification

opt = findstatesOptions;

Identify Initial States using Options Set

Create an options set for findstates(idParametric) by using an
initial state specification object.

Identify a state-space model from data.

load iddata8 z8;
ssest_opt = ssestOptions('Focus','simulation');
sys = ssest(z8,4,ssest_opt);

z8 is an iddata object containing time-domain system response data.

ssest_opt specifies the 'Focus' option for state-space estimation as
'simulation'.

sys is a fourth-order idss model that is identified from the data.

Configure a specification object for the initial states of sys.

x0obj = idpar([1;nan(3,1)]);
x0obj.Free(1) = false;
x0obj.Minimum(2) = 0;
x0obj.Maximum(2) = 1;

x0obj specifies estimation constraints on the initial conditions.

1-230

findstatesOptions

The value of the first state is specified as 1 when x0obj is created.
x0obj.Free(1) = false specifies the first initial state as a fixed
estimation parameter.

The second state is unknown. But, x0obj.Minimum(2) = 0 and
x0obj.Maximum(2) = 1 specify the lower and upper bounds of the
second state as 0 and 1, respectively.

Create an option set for findstates to identify the initial states of sys.

opt = findstatesOptions('InitialState',x0obj);

Alternatively, use dot notation to set the values of opt.

opt = findstatesOptions;
opt.InitialState = x0obj;

Identify the initial states of sys.

x0_estimated = findstates(sys,z8,Inf,opt);

See Also findstates(idParametric) | idpar

1-231

fnorm

Purpose Pointwise peak gain of FRD model

Syntax fnrm = fnorm(sys)
fnrm = fnorm(sys,ntype)

Description fnrm = fnorm(sys) computes the pointwise 2-norm of the frequency
response contained in the FRD model sys, that is, the peak gain at
each frequency point. The output fnrm is an FRD object containing
the peak gain across frequencies.

fnrm = fnorm(sys,ntype) computes the frequency response gains
using the matrix norm specified by ntype. See norm for valid matrix
norms and corresponding NTYPE values.

See Also norm | abs

1-232

forecast

Purpose Forecast linear system response into future

Syntax yf = forecast(model,past_data,K)
yf = forecast(model,past_data,K,future_inputs)
yf = forecast(model,past_data,K, ___ ,opt)
[yf,x0efmod] = forecast(model,past_data,K, ___)

Description yf = forecast(model,past_data,K) forecasts the output of a linear
identified time series model, model, K steps into the future using the
historical output data record, past_data. In this case, future denotes
the time samples beyond the last sample time in past_data.

yf = forecast(model,past_data,K,future_inputs) uses the future
values of the inputs to model, future_inputs to forecast the response
of an input-output model.

yf = forecast(model,past_data,K, ___ ,opt) forecasts the future
output of model using the option set opt to specify the forecasting
algorithm options.

[yf,x0efmod] = forecast(model,past_data,K, ___) returns the
estimated values for initial states, x0e, and a forecasting model, fmod.

Input
Arguments

model

Identified linear model.

past_data

Historical input/output values.

If model is a time-series model, which does not have input signals, then
past_data can be specified as:

• An iddata object with no inputs

• A matrix of historical time-series data

K

Time horizon of the forecast.

1-233

forecast

K must be a positive integer that is a multiple of the sampling time of
the data, past_data.Ts.

future_inputs

Future values of inputs to model.

Specify future_inputs for the time interval past_data.Tstart
+ (N+1:N+K)*past_data.Ts, where N is the number of samples in
past_data.

future_inputs must be a matrix of size [K, Nu], where K is forecast
horizon and Nu is the number of inputs.

future_inputs is only relevant if model is not a time-series model.

Alternatively, use an iddata model to specify future_inputs.

Use [] if model is a time-series model.

If past_data is specified for multiple experiments, then specify
future_inputs as:

• A multiexperiment iddata object

• Cell array of matrices, with an array entry for each corresponding
past_data experiment data set

Default: 0

opt

Options set for forecast.

Use forecastOptions to define options.

Output
Arguments

yf

Forecasted response.

yf is the forecasted response at times after the last sample time in
past_data. In true time, yf contains data for the time interval

1-234

forecast

past_data.Tstart + (N+1:N+K)*past_data.Ts. N is the number of
samples in past_data.

x0e

Estimated initial states.

x0e is returned only for state-space systems.

fmod

Forecasting model.

fmod is a dynamic system whose simulation, using future_inputs
and x0e, yields yf as the output.

fmod is always a discrete-time system.

If past_data is specified for multiple experiments, then fmod is
an array of dynamic models, with each entry corresponding to an
experiment in past_data.

Examples Forecast Response of Time Series Model

Forecast the response of a time series model for a given number of time
steps in the future.

Obtain a time series model and past data.

load iddata9 z9
model = ar(z9,4);
past_data = z9.OutputData(1:51); % double data

z9 is an iddata object that contains the measured output only.

model is an idpoly time-series model.

past_data contains the first 51 data points of z9.

Forecast the system response into the future for a given time horizon.

K = 100;

1-235

forecast

yf = forecast(model,past_data(1:50),K);

K specifies the forecasting time horizon as 100 samples, with the same
sampling time as past_data.

yf is the forecasted model response.

Analyze the forecasted data.

t = z9.SamplingInstants;
t1 = t(1:51);
t2 = t(51:150)';
plot(t1,past_data,t2,yf,'r')
legend('Measured','Forecasted')

Forecast Model Response Using Future Inputs

Obtain past data, future inputs, and identified linear model.

load iddata1 z1
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh'); % integ

1-236

forecast

past_data = z1(1:100);
future_inputs = z1.u(101:end);
model = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);

z1 is an iddata object that contains integrated data.

model is an idpoly model.

past_data contains the first 100 data points of z1.

future_inputs contains the last 200 data points of z1.

Forecast the system response into the future for a given time horizon
and future inputs.

K = 200;
yf = forecast(model,past_data,K,future_inputs);

K specifies the forecasting time horizon as 200 samples, with the same
sampling time as past_data.

yf is the forecasted model response.

Analyze the forecasted data.

plot(past_data,yf);
legend('Measured','Forecasted')

1-237

forecast

See Also forecastOptions | predict | compare | sim | lsim | ar | arx
| n4sid | iddata

1-238

forecastOptions

Purpose Option set for forecast

Syntax opt = forecastOptions
opt = forecastOptions(Name,Value)

Description opt = forecastOptions returns the default option set for forecast.

opt = forecastOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify initial conditions.

InitialCondition requires one of the following:

• 'z' — Zero initial conditions.

• 'e' — Estimate initial conditions such that the 1-step prediction
error is minimized for the observed output.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients.

• x0 — Numerical column vector denoting initial states. For
multiexperiment data, use a matrix with Ne columns, where Ne is the
number of experiments. Use this option for state-space models only.

• x0obj — Specification object created using idpar. Use this object
for discrete-time state-space models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying
minimum/maximum bounds.

1-239

forecastOptions

The effects of initial conditions on the forecasted response is negligible if
the observed data is for a sufficiently long time interval, or if the model
has finite memory. For such systems, using zero initial conditions is
sufficient. Otherwise, the initial conditions influence the forecasted
values. This influence usually diminishes over the forecasted time
interval.

Default: 'e'

’InputOffset’

Input signal offset.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data before the input is used to simulate the model.

Default: []

’OutputOffset’

Output signal offset.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

1-240

forecastOptions

Default: []

’OutputWeight’

Weight of output for initial condition estimation.

OutputWeight requires one of the following:

• '[]'— No weighting. This is the same as using eye(Ny), where Ny
is the number of outputs.

• 'noise'— Inverse of the noise variance stored with the model.

• Matrix of doubles — A positive semidefinite matrix of dimension
Ny-by-Ny, where Ny is the number of outputs.

Default: '[]'

Output
Arguments

opt

Option set containing the specified options for forecast.

Examples Create Default Options Set for Model Forecasting

Create a default options set for forecast.

opt = forecastOptions;

Specify Options for Model Forecasting

Create an options set for forecast using zero initial conditions and set
the input offset to 5.

opt = forecastOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = forecastOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also forecast | idpar

1-241

fpe

Purpose Akaike Final Prediction Error for estimated model

Syntax fp = fpe(Model1,Model2,Model3,...)

Description Model is the name of an idtf, idgrey, idpoly, idproc, idss, idnlarx,
idnlhw, or idnlgrey model object.

fp is returned as a row vector containing the values of the Akaike Final
Prediction Error (FPE) for the different models.

Definitions Akaike’s Final Prediction Error (FPE) criterion provides a measure of
model quality by simulating the situation where the model is tested on
a different data set. After computing several different models, you can
compare them using this criterion. According to Akaike’s theory, the
most accurate model has the smallest FPE.

Note If you use the same data set for both model estimation and
validation, the fit always improves as you increase the model order and,
therefore, the flexibility of the model structure.

Akaike’s Final Prediction Error (FPE) is defined by the following
equation:

FPE V
d

N
d

N
=

+
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1

1

where V is the loss function, d is the number of estimated parameters,
and N is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for
d<<N and uses the following approximation to compute FPE:

FPE V d
N= +()1 2

The loss function V is defined by the following equation:

1-242

fpe

V t tN N N
TN

= () ()()⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑det , ,1

1
ε θ ε θ

where θN represents the estimated parameters.

References Sections 7.4 and 16.4 in Ljung (1999).

See Also aic | goodnessOfFit

1-243

frdata

Purpose Access data for frequency response data (FRD) object

Syntax [response,freq] = frdata(sys)
[response,freq,covresp] = frdata(sys)
[response,freq,Ts,covresp] = frdata(sys,'v')
[response,freq,Ts] = frdata(sys)

Description [response,freq] = frdata(sys) returns the response data and
frequency samples of the FRD model sys. For an FRD model with Ny
outputs and Nu inputs at Nf frequencies:

• response is an Ny-by-Nu-by-Nf multidimensional array where the
(i,j) entry specifies the response from input j to output i.

• freq is a column vector of length Nf that contains the frequency
samples of the FRD model.

See the frd reference page for more information on the data format for
FRD response data.

[response,freq,covresp] = frdata(sys) also returns the
covariance covresp of the response data resp for idfrd model sys. The
covariance covresp is a 5D-array where covH(i,j,k,:,:) contains
the 2-by-2 covariance matrix of the response resp(i,j,k). The (1,1)
element is the variance of the real part, the (2,2) element the variance
of the imaginary part and the (1,2) and (2,1) elements the covariance
between the real and imaginary parts.

For SISO FRD models, the syntax

[response,freq] = frdata(sys,'v')

forces frdata to return the response data as a column vector rather
than a 3-dimensional array (see example below). Similarly

[response,freq,Ts,covresp] = frdata(sys,'v') for an IDFRD
model sys returns covresp as a 3-dimensional rather than a
5-dimensional array.

[response,freq,Ts] = frdata(sys) also returns the sample time Ts.

1-244

frdata

Other properties of sys can be accessed with get or by direct
structure-like referencing (e.g., sys.Frequency).

Arguments The input argument sys to frdata must be an FRD model.

Examples Extract Data from Frequency Response Data Model

Create a frequency response data model and extract the frequency
response data.

Create a frequency response data by computing the response of a
transfer function on a grid of frequencies.

H = tf([-1.2,-2.4,-1.5],[1,20,9.1]);
w = logspace(-2,3,101);
sys = frd(H,w);

sys is a SISO frequency response data (frd) model containing the
frequency response at 101 frequencies.

Extract the frequency response data from sys.

[response,freq] = frdata(sys);

response is a 1-by-1-by-101 array. response(1,1,k) is the complex
frequency response at the frequency freq(k).

See Also frd | get | set | idfrd | freqresp | spectrum

1-245

freqresp

Purpose Frequency response over grid

Syntax [H,wout] = freqresp(sys)
H = freqresp(sys,w)
H = freqresp(sys,w,units)
[H,wout,covH] = freqresp(idsys,...)

Description [H,wout] = freqresp(sys) returns the frequency response of the
dynamic system model sys at frequencies wout. The freqresp
command automatically determines the frequencies based on the
dynamics of sys.

H = freqresp(sys,w) returns the frequency response on the real
frequency grid specified by the vector w.

H = freqresp(sys,w,units) explicitly specifies the frequency units of
w with the string units.

[H,wout,covH] = freqresp(idsys,...) also returns the covariance
covH of the frequency response of the identified model idsys.

Input
Arguments

sys

Any dynamic system model or model array.

w

Vector of real frequencies at which to evaluate the frequency response.
Specify frequencies in units of rad/TimeUnit, where TimeUnit is the
time units specified in the TimeUnit property of sys.

units

String specifying the units of the frequencies in the input frequency
vector w. Units can take the following values:

• 'rad/TimeUnit' — radians per the time unit specified in the
TimeUnit property of sys

1-246

freqresp

• 'cycles/TimeUnit' — cycles per the time unit specified in the
TimeUnit property of sys

• 'rad/s'

• 'Hz'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rpm'

Default: 'rad/TimeUnit'

idsys

Any identified model.

Output
Arguments

H

Array containing the frequency response values.

If sys is an individual dynamic system model having Ny outputs and
Nu inputs, H is a 3D array with dimensions Ny-by-Nu-by-Nw, where Nw
is the number of frequency points. Thus, H(:,:,k) is the response at
the frequency w(k) or wout(k).

If sys is a model array of size [Ny Nu S1 ... Sn], H is an array with
dimensions Ny-by-Nu-by-Nw-by-S1-by-...-by-Sn] array.

If sys is a frequency response data model (such as frd, genfrd, or
idfrd), freqresp(sys,w) evaluates to NaN for values of w falling outside
the frequency interval defined by sys.frequency. The freqresp
command can interpolate between frequencies in sys.frequency.
However, freqresp cannot extrapolate beyond the frequency interval
defined by sys.frequency.

wout

1-247

freqresp

Vector of frequencies corresponding to the frequency response values
in H. If you omit w from the inputs to freqresp, the command
automatically determines the frequencies of wout based on the system
dynamics. If you specify w, then wout = w

covH

Covariance of the response H. The covariance is a 5D array where
covH(i,j,k,:,:) contains the 2-by-2 covariance matrix of the response
from the ith input to the jth output at frequency w(k). The (1,1)
element of this 2-by-2 matrix is the variance of the real part of the
response. The (2,2) element is the variance of the imaginary part.
The (1,2) and (2,1) elements are the covariance between the real and
imaginary parts of the response.

Definitions Frequency Response

In continuous time, the frequency response at a frequency ω is the
transfer function value at s = jω. For state-space models, this value
is given by

H j D C j I A B() () = + − −1

In discrete time, the frequency response is the transfer function
evaluated at points on the unit circle that correspond to the real
frequencies. freqresp maps the real frequencies w(1),..., w(N) to points

on the unit circle using the transformation z e j Ts= . Ts is the sample
time. The function returns the values of the transfer function at the
resulting z values. For models with unspecified sample time, freqresp
uses Ts = 1.

Examples Frequency Response

Compute the frequency response of the 2-input, 2-output system

1-248

freqresp

sys s
s
s

0
1

1
1
2

1

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];

[H,wout] = freqresp(sys);

H is a 2-by-2-by-45 array. Each entry H(:,:,k) in H is a 2-by-2 matrix
giving the complex frequency response of all input-output pairs of sys
at the corresponding frequency wout(k). The 45 frequencies in wout are
automatically selected based on the dynamics of sys.

Response on Specified Frequency Grid

Compute the frequency response of the 2-input, 2-output system

sys s
s
s

0
1

1
1
2

1

on a logarithmically-spaced grid of 200 frequency points between 10
and 100 radians per second.

sys11 = 0;
sys22 = 1;
sys12 = tf(1,[1 1]);
sys21 = tf([1 -1],[1 2]);
sys = [sys11,sys12;sys21,sys22];

w = logspace(1,2,200);

1-249

freqresp

H = freqresp(sys,w);

H is a 2-by-2-by-200 array. Each entry H(:,:,k) in H is a 2-by-2 matrix
giving the complex frequency response of all input-output pairs of sys
at the corresponding frequency w(k).

Frequency Response and Associated Covariance

Compute the frequency response and associated covariance for an
identified model at its peak response frequency.

load iddata1 z1
model = procest(z1, 'P2UZ');
w = 4.26;
[H,~,covH] = freqresp(model, w)

Algorithms For transfer functions or zero-pole-gain models, freqresp evaluates the
numerator(s) and denominator(s) at the specified frequency points.
For continuous-time state-space models (A, B, C, D), the frequency
response is

D C j A B N+ − =−() , , , 1
1

For efficiency, A is reduced to upper Hessenberg form and the linear
equation (jω − A)X = B is solved at each frequency point, taking
advantage of the Hessenberg structure. The reduction to Hessenberg
form provides a good compromise between efficiency and reliability. See
[1] for more details on this technique.

References [1] Laub, A.J., "Efficient Multivariable Frequency Response
Computations," IEEE Transactions on Automatic Control, AC-26
(1981), pp. 407-408.

Alternatives Use evalfr to evaluate the frequency response at individual
frequencies or small numbers of frequencies. freqresp is optimized for
medium-to-large vectors of frequencies.

1-250

freqresp

See Also evalfr | bode | nyquist | nichols | sigma | ltiview | interp |
spectrum

1-251

fselect

Purpose Select frequency points or range in FRD model

Syntax subsys = fselect(sys,fmin,fmax)
subsys = fselect(sys,index)

Description subsys = fselect(sys,fmin,fmax) takes an FRD model sys and
selects the portion of the frequency response between the frequencies
fmin and fmax. The selected range [fmin,fmax] should be expressed
in the FRD model units. For an IDFRD model, the SpectrumData,
CovarianceData and NoiseCovariance values, if non-empty, are also
selected in the chosen range.

subsys = fselect(sys,index) selects the frequency points specified
by the vector of indices index. The resulting frequency grid is

sys.Frequency(index)

See Also interp | fcat | fdel | frd | idfrd

1-252

get

Purpose Access model property values

Syntax Value = get(sys,'PropertyName')
Struct = get(sys)

Description Value = get(sys,'PropertyName') returns the current value of
the property PropertyName of the model object sys. The string
'PropertyName' can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user'). See reference pages for the individual model object
types for a list of properties available for that model.

Struct = get(sys) converts the TF, SS, or ZPK object sys into a
standard MATLAB structure with the property names as field names
and the property values as field values.

Without left-side argument,

get(sys)

displays all properties of sys and their values.

Examples Consider the discrete-time SISO transfer function defined by

h = tf(1,[1 2],0.1,'inputname','voltage','user','hello')

You can display all properties of h with

get(h)
num: {[0 1]}
den: {[1 2]}

ioDelay: 0
Variable: 'z'

Ts: 0.1
InputDelay: 0

OutputDelay: 0
InputName: {'voltage'}

OutputName: {''}

1-253

get

InputGroup: [1x1 struct]
OutputGroup: [1x1 struct]

Name: ''
Notes: {}

UserData: 'hello'

or query only about the numerator and sample time values by

get(h,'num')

ans =
[1x2 double]

and

get(h,'ts')

ans =
0.1000

Because the numerator data (num property) is always stored as a cell
array, the first command evaluates to a cell array containing the row
vector [0 1].

Tips An alternative to the syntax

Value = get(sys,'PropertyName')

is the structure-like referencing

Value = sys.PropertyName

For example,

sys.Ts
sys.a
sys.user

1-254

get

return the values of the sample time, A matrix, and UserData property
of the (state-space) model sys.

See Also frdata | set | ssdata | tfdata | idssdata | polydata | getpvec |
getcov

1-255

getcov

Purpose Parameter covariance of linear identified parametric model

Syntax cov_data = getcov(sys)
cov_data = getcov(sys,cov_type)
cov_data = getcov(sys,cov_type,'free')

Description cov_data = getcov(sys) returns the raw covariance of the parameters
of a linear identified parametric model.

• If sys is a single model, then cov_data is an np-by-np matrix. np is
the number of parameters of sys.

• If sys is a model array, then cov_data is a cell array of size equal
to the array size of sys.

cov_data(i,j,k,...) contains the covariance data for
sys(:,:,i,j,k,...).

cov_data = getcov(sys,cov_type) returns the parameter covariance
as either a matrix or a structure, depending on the covariance type
that is specified.

cov_data = getcov(sys,cov_type,'free') returns the covariance
data of only the free model parameters.

Input
Arguments

sys - Linear identified parametric model
idtf, idss, idgrey, idpoly, or idproc object | model array

Linear identified parametric model, specified as an idtf, idss, idgrey,
idpoly, or idproc model or an array of such models.

cov_type - Covariance type
'value' (default) | 'factors'

Covariance return type, specified as either 'value' or 'factors'.

• If cov_type is 'value', then cov_data is returned as a matrix
(raw covariance).

1-256

getcov

• If cov_type is 'factors', then cov_data is returned as a structure
containing the factors of the covariance matrix.

Use this option for fetching the covariance data if the covariance
matrix contains nonfinite values, is not positive definite, or is ill
conditioned. You can calculate the response uncertainty using
the covariance factors instead of the numerically disadvantageous
covariance matrix.

This option does not offer a numerical advantage in the following
cases:

- sys is estimated using certain instrument variable methods, such
as iv4.

- You have explicitly specified the parameter covariance of sys
using the deprecated CovarianceMatrix model property.

Data Types
char

Output
Arguments

cov_data - Parameter covariance of sys
matrix or cell array of matrices | structure or cell array of structures

Parameter covariance of sys, returned as a matrix, cell array of
matrices, structure, or cell array of structures.

• If sys is a single model and cov_type is 'value', then cov_data is
an np-by-np matrix. np is the number of parameters of sys.

The value of the nonzero elements of this matrix is equal to
sys.Report.Parameters.FreeParCovariance when sys is obtained
via estimation. The row and column entries that correspond to fixed
parameters are zero.

• If sys is a single model and cov_type is 'factors', then cov_data
is a structure with fields:

- R — Usually an upper triangular matrix.

- T — Transformation matrix.

1-257

getcov

- Free— Logical vector of length np, indicating if a model parameter
is free (estimated) or not. np is the number of parameters of sys.

To obtain the covariance matrix using the factored form, enter:

Free = cov_factored.Free;
T = cov_factored.T;
R = cov_factored.R;
np = nparams(sys);
cov_matrix = zeros(np);
cov_matrix(Free, Free) = T*inv(R'*R)*T';

For numerical accuracy reasons, you can calculate T*inv(R'*R)*T'
as X*X', where X = T/R.

• If sys is a model array, then cov_data is a cell array of size equal
to the array size of sys.

cov_data(i,j,k,...) contains the covariance data for
sys(:,:,i,j,k,...).

Examples Raw Parameter Covariance for Identified Model

Obtain the identified model.

load iddata1 z1;
sys = tfest(z1,2);

Get the raw parameter covariance for the model.

cov_data = getcov(sys);

cov_data contains the covariance matrix for the parameter vector
[sys.num,sys.den(2:end),sys.ioDelay]. sys.den(1) is fixed to
1 and not treated as a parameter. The covariance matrix entries
corresponding to the delay parameter (fifth row and column) are zero
because the delay was not estimated.

1-258

getcov

Raw Parameter Covariance for Identified Model Array

Obtain the identified model array.

load iddata1 z1;
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2)

sysarr is a 2-by-1 array of continuous-time, identified transfer
functions.

Get the raw parameter covariance for the models in the array.

cov_data = getcov(sysarr);

cov_data is a 2-by-1 cell array. cov_data{1} and cov_data{2} are the
raw parameter covariance matrices for sys1 and sys2.

Raw Covariance of Estimated Parameters of Identified Model

Load the estimation data.

load iddata1 z1;
z1.y = cumsum(z1.y);

Estimate the model.

init_sys = idtf([100 1500],[1 10 10 0]);
init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;
opt = tfestOptions('SearchMethod', 'lm');
sys = tfest(z1,init_sys,opt);

sys, an idtf model, has six parameters, four of which are estimated.

Get the covariance matrix for the estimated parameters.

cov_type = 'value';

1-259

getcov

cov_data = getcov(sys,cov_type,'free');

cov_data is a 4x4 covariance matrix, with entries corresponding to the
four estimated parameters.

Factored Parameter Covariance for Identified Model

Obtain the identified model.

load iddata1 z1;
sys = tfest(z1,2);

Get the factored parameter covariance for the model.

cov_type = 'factors';
cov_data = getcov(sys,cov_type);

Factored Parameter Covariance for Identified Model Array

Obtain the identified model array.

load iddata1 z1;
sys1 = tfest(z1,2);
sys2 = tfest(z1,3);
sysarr = stack(1,sys1,sys2)

sysarr is a 2-by-1 array of continuous-time, identified transfer
functions.

Get the factored parameter covariance for the models in the array.

cov_type = 'factors';
cov_data = getcov(sysarr,cov_type);

cov_data is a 2-by-1 structure array. cov_data(1) and cov_data(2)
are the factored covariance structures for sys1 and sys2.

1-260

getcov

Factored Covariance of Estimated Parameters of Identified
Model

Load the estimation data.

load iddata1 z1;
z1.y = cumsum(z1.y);

Estimate the model.

init_sys = idtf([100 1500],[1 10 10 0]);
init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;
opt = tfestOptions('SearchMethod', 'lm');
sys = tfest(z1,init_sys,opt);

sys, an idtf model, has six parameters, four of which are estimated.

Get the factored covariance for the estimated parameters.

cov_type = 'factors';
cov_data = getcov(sys,cov_type,'free');

See Also nparams | setcov | rsample | sim | simsd | getpvec

Concepts • “What Is Model Covariance?”
• “Types of Model Uncertainty Information”

1-261

getDelayInfo

Purpose Get input/output delay information for idnlarx model structure

Syntax DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

Description DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each
input and output variable of an idnlarx model.

DELAYS = getDelayInfo(MODEL,TYPE) lets you choose between
obtaining maximum delays across all input and output variables or
maximum delays for each output variable individually. When delays
are obtained for each output variable individually a matrix is returned,
where each row is a vector containing ny+nu maximum delays for each
output variable, and:

• ny is the number of outputs of MODEL.

• nu is the number of inputs of MODEL.

Delay information is useful for determining the number of states
in the model. For nonlinear ARX models, the states are related to
the set of delayed input and output variables that define the model
structure (regressors). For example, if an input or output variable p
has a maximum delay of D samples, then it contributes D elements
to the state vector:

p(t-1), p(t-2), ...p(t-D)

The number of states of a nonlinear ARX model equals the sum of
the maximum delays of each input and output variable. For more
information about the definition of states for idnlarx models, see
“Definition of idnlarx States” on page 1-363

Input
Arguments

getDelayInfo accepts the following arguments:

• MODEL: idnlarx model.

• TYPE: (Optional) Specifies whether to obtain channel delays
'channelwise' or 'all' as follows:

1-262

getDelayInfo

- 'all': Default value. DELAYS contains the maximum delays
across each output (vector of ny+nu entries, where [ny, nu] =
size(MODEL)).

- 'channelwise': DELAYS contains delay values separated for each
output (ny-by-(ny+nu) matrix).

Output
Arguments

• DELAYS: Contains delay information in a vector of length ny+nu
arranged with output channels preceding the input channels, i.e.,
[y1, y2,.., u1, u2,..].

Examples In the following example you create a 2-output, 3-input nonlinear ARX
model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.

M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],...
'linear');

2 Compute the maximum delays for each output variable individually.

Del = getDelayInfo(M,'channelwise')

Del =

2 0 2 1 0
1 0 1 5 0

The matrix Del contains the maximum delays for the first and second
output of the model M. You can interpret the contents of matrix Del
as follows:

• In the dynamics for the output 1 (y1) of model M, the maximum delays
for each input/output channel are as follows: y1: 2, y2: 0, u1: 2, u2:
1, u3:0.

1-263

getDelayInfo

• Similarly, in the dynamics for the output 2 (y2) of the model, the
maximum delays in channels y1, y2, u1, u2, u3 are 1, 0, 1, 5, and 0
respectively.

You can find the maximum delays for all the input and output variables
in the order (y1, y2, u1, u2, u3) by executing the command

Del=getDelayInfo(M, 'all')

which returns

Del =

2 0 2 5 0

Note The maximum delay across all output equations can be obtained
by executing MaxDel = max(Del,[],1). Since input u2 has 5 delays
(the 4th entry in Del, there are 5 terms corresponding to u5 in the state
vector ((u5(t-1), ...u5(t-5). Applying this definition to all I/O channels,
the complete state vector for model M becomes:

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1), u2(t-2), u2(t-3), u2(t-4),
u2(t-5)]

See Also data2state(idnlarx) | getreg | idnlarx

1-264

getexp

Purpose Specific experiments from multiple-experiment data set

Syntax d1 = getexp(data,ExperimentNumber)
d1 = getexp(data,ExperimentName)

Description data is an iddata object that contains several experiments. d1
is another iddata object containing the indicated experiment(s).
The reference can either be by ExperimentNumber, as in
d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by
ExperimentName, as in d1 = getexp(data,'Period1') or
d1 = getexp(data,{'Day1','Day3'}).

See merge (iddata) and iddata for how to create multiple-experiment
data objects.

You can also retrieve the experiments using a fourth subscript, as in d1
= data(:,:,:,ExperimentNumber). Type help iddata/subsref for
details on this.

1-265

getinit

Purpose Values of idnlgrey model initial states

Syntax getinit(model)
getinit(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

Default: 'Value'.

Description getinit(model) gets the initial-state values in the 'Value' field of the
InitialStates model property.

getinit(model,prop) gets the initial-state values of the prop field
of the InitialStates model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', 'Maximum', and 'Fixed'.

The returned values are an Nx-by-1 cell array of values, where Nx is
the number of states.

See Also getpar | idnlgrey | setinit | setpar

1-266

getoptions

Purpose Return @PlotOptions handle or plot options property

Syntax p = getoptions(h)
p = getoptions(h,propertyname)

Description p = getoptions(h) returns the plot options handle associated with plot
handle h. p contains all the settable options for a given response plot.

p = getoptions(h,propertyname) returns the specified options
property, propertyname, for the plot with handle h. You can use this to
interrogate a plot handle. For example,

p = getoptions(h,'Grid')

returns 'on' if a grid is visible, and 'off' when it is not.

For a list of the properties and values available for each plot type, see
“Properties and Values Reference”.

See Also setoptions

1-267

getpar

Purpose Parameter values and properties of idnlgrey model parameters

Syntax getpar(model)
getpar(model,prop)

Arguments model
Name of the idnlgrey model object.

Property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.

Default: 'Value'.

Description getpar(model) gets the model parameter values in the 'Value' field of
the Parameters model property.

getpar(model,prop) gets the model parameter values in the prop
field of the Parameters model property. prop can be 'Name', 'Unit',
'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where Np is
the number of parameters.

See Also getinit | idnlgrey | setinit | setpar | getpvec

1-268

getpvec

Purpose Model parameters and associated uncertainty data

Syntax pvec = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys)
[pvec,pvec_sd] = getpvec(sys,'free')

Description pvec = getpvec(sys) returns a vector, pvec, containing the values of
all the parameters of the identified model sys.

[pvec,pvec_sd] = getpvec(sys) also returns the 1 standard
deviation value of the uncertainty associated with the parameters
of sys. If the model covariance information for sys is not available,
pvec_sd is [].

[pvec,pvec_sd] = getpvec(sys,'free') returns the values and
standard deviation data for only the free parameters of sys.

Input
Arguments

sys

Identified model.

Output
Arguments

pvec

Values of the parameters of sys.

If sys is an array of models, then pvec is a cell array with parameter
value vectors corresponding to each model in sys.

pvec_sd

1 standard deviation value of the parameters of sys.

If the model covariance information for sys is not available, pvec_sd
is [].

If sys is an array of models, then pvec_sd is a cell array with standard
deviation vectors corresponding to each model in sys.

1-269

getpvec

Examples Obtain the parameter values for an estimated transfer function.

load iddata1 z1;
sys = tfest(z1,3);
pvec = getpvec(sys);

Obtain the parameter values and associated 1 standard deviation
values for an estimated state-space model.

load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys)

Obtain the free parameter values and associated 1 standard deviation
values for an estimated state-space model.

load iddata2 z2;
sys = ssest(z2,3);
[pvec, pvec_sd]=getpvec(sys,'free')

See Also setpvec | getcov | idssdata | tfdata | zpkdata

1-270

getreg

Purpose Regressor expressions and numerical values in nonlinear ARX model

Syntax Rs = getreg(model)
Rs = getreg(model,subset)
Rm = getreg(model,subset,data)
Rm = getreg(model,subset,data,init)

Description Rs = getreg(model) returns expressions for computing regressors in
the nonlinear ARX model. Rs is a cell array of strings. model is an
idnlarx object.

Rs = getreg(model,subset) returns regressor expressions for a
specified subset of regressors. subset is a string.

Rm = getreg(model,subset,data) returns regressor values as a
matrix for a specified subset of regressors.

Rm = getreg(model,subset,data,init) returns regressor values
as matrices for a specified subset of regressors. The first N rows
of each regressor matrix depend on the initial states init, where
N is the maximum delay in the regressors (see getDelayInfo). For
multiple-output models, Rm is a cell array of cell arrays.

Input
Arguments

data
iddata object containing measured data.

init
Initial conditions of your data:

• 'z' (default) specifies zero initial state.

• Real column vector containing the initial state values. input
and output data values at a time instant before the first sample
in data. To create the initial state vector from the input-output
data, use the data2state method of the idnlarx class. For
multiple-experiment data, this is a matrix where each column
specifies the initial state of the model corresponding to that
experiment.

1-271

getreg

• iddata object containing input and output samples at
time instants before to the first sample in data. When the
iddata object contains more samples than the maximum
delay in the model, only the most recent samples are used.
The minimum number of samples required is equal to
max(getDelayInfo(model)).

model
iddata object representing nonlinear ARX model.

subset
String that represents a subset of all regressors:

• (Default) 'all' — All regressors.

• 'custom'—Only custom regressors.

• 'input'—Only standard regressors computed from input data.

• 'linear'—Only regressors not used in the nonlinear block.

• 'nonlinear'—Only regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation of 'nonlinear'.

• 'output'—Only regressors computed from output data.

• 'standard'—Only standard regressors (excluding any custom
regressors).

Output
Arguments

Rm
Matrix of regressor values for all or a specified subset of
regressors. Each matrix in Rm contains as many rows as there are
data samples. For a model with ny outputs, Rm is an ny-by-1 cell
array of matrices. When data contains multiple experiments,
Rm is a cell array where each element corresponds to a matrix of
regressor values for an experiment.

1-272

getreg

Rs
Regressor expressions represented as a cell array of strings. For a
model with ny outputs, Rs is an ny-by-1 cell array of cell arrays
of strings. For example, the expression 'u1(t-2)' computes the
regressor by delaying the input signal u1 by two time samples.
Similarly, the expression 'y2(t-1)' computes the regressor by
delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in
the idnlarx object property model.NonlinearRegressors.

Examples Get regressor expressions and values, and evaluate the predicted model
output:

% Load sample data u and y:
load twotankdata;
Ts = 0.2; % Sampling interval is 0.2 min

% Create data object:
z = iddata(y,u,Ts);

% Use first 1000 samples for estimation:
ze = z(1:1000);

% Estimate nonlinear ARX model
model = nlarx(ze,[3 2 1]);

% Get regressor expressions:
Rs = getreg(model)

% Get regressor values:
Rm = getreg(model,'all',ze)

% Evaluate model output for one-step-prediction:
Y = evaluate(model.Nonlinearity,Rm)

% The previous result is equivalent to:
Y_p = predict(model,ze,1,'z')

See Also addreg | customreg | evaluate | polyreg

How To • “Identifying Nonlinear ARX Models”

1-273

getTrend

Purpose Data offset and trend information

Syntax T = getTrend(data)
T = getTrend(data,0)
T = getTrend(data,1)

Description T = getTrend(data) constructs a TrendInfo object to store offset,
mean, or linear trend information for detrending or retrending data.
You can assign specific offset and slope values to T.

T = getTrend(data,0) computes the means of input and output
signals and stores them as InputOffset and OutputOffset properties
of T, respectively.

T = getTrend(data,1) computes a best-fit straight line for both input
and output signals and stores them as properties of T.

Examples Compute input-output signal means, store them, and detrend the data:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Compute the mean of the data
T = getTrend(data,0)
% Remove the mean from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

Remove a specific offset from input and output data signals:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec

1-274

getTrend

data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

See Also detrend | retrend | TrendInfo

How To • “Handling Offsets and Trends in Data”

1-275

goodnessOfFit

Purpose Goodness of fit between test and reference data

Syntax fit = goodnessOfFit(x,xref,cost_func)

Description fit = goodnessOfFit(x,xref,cost_func) returns the goodness of
fit between the data, x, and the reference, xref using a cost function
specified by cost_func.

Input
Arguments

x

Test data.

x is an Ns-by-N matrix, where Ns is the number of samples and N is the
number of channels.

x can also be a cell array of multiple test data sets.

x must not contain any NaN or Inf values.

xref

Reference data.

xref must be of the same size as x.

xref can also be a cell array of multiple reference sets. In this
case, each individual reference set must be of the same size as the
corresponding test data set.

xref must not contain any NaN or Inf values.

cost_func

Cost function to determine goodness of fit.

cost_func must be one of the following strings:

• 'MSE' — Mean square error:

fit
x xref

Ns

2

1

1-276

goodnessOfFit

where, indicates the 2-norm of a vector. fit is a scalar value.

• 'NRMSE' — Normalized root mean square error:

fit i
x i xref i

x i mean xref i
()

(:,) (:,)

(:,) ((:,))

1

where, indicates the 2-norm of a vector. fit is a row vector of
length N and i = 1,...,N, where N is the number of channels.

NRMSE costs vary between -Inf (bad fit) to 1 (perfect fit). If the
cost function is equal to zero, then x is no better than a straight line
at matching xref.

• 'NMSE' — Normalized mean square error:

fit i
x i xref i

x i mean xref i
()

(:,) (:,)
(:,) ((:,))

1

2

where, indicates the 2-norm of a vector. fit is a row vector of
length N and i = 1,...,N, where N is the number of channels.

NMSE costs vary between -Inf (bad fit) to 1 (perfect fit). If the cost
function is equal to zero, then x is no better than a straight line at
matching xref.

Output
Arguments

fit

Goodness of fit between test and reference data.

For a single test data set and reference pair, fit is returned as a:

• Scalar if cost_func is MSE.

• Row vector of length N if cost_func is NRMSE or NMSE. N is the
number of channels.

If x and/or xref are cell arrays, then fit is an array containing the
goodness of fit values for each test data and reference pair.

1-277

goodnessOfFit

Examples Calculate Goodness of Fit of Between Estimated and
Measured Data

Obtain the measured output.

load iddata1 z1;
yref = z1.y;

z1 is an iddata object containing measured input/output data. z1.y is
the measured output.

Obtain the estimated output.

sys = tfest(z1, 2);
y = sim(sys, z1.u);

sys is a second-order transfer function estimated using the measured
input/output data. y is the output estimated using sys and the
measured input.

Calculate the goodness of the fit between the measured and estimated
outputs.

cost_func = 'NRMSE';
fit = goodnessOfFit(y,yref,cost_func);

The goodness of fit is calculated using the normalized root mean square
error as the cost function.

Alternatively, you can use the compare function to calculate the
goodness of fit:

compare(z1,sys,compareOptions('InitialCondition','z'));

See Also compare | pe | resid | fpe | aic

1-278

greyest

Purpose Linear grey-box model estimation

Syntax sys = greyest(data,init_sys)
sys = greyest(data,init_sys,opt)

Description sys = greyest(data,init_sys) estimates a linear grey-box model,
sys, using time or frequency domain data, data. The dimensions of the
inputs and outputs of data and init_sys, an idgrey model, must
match. sys is an identified idgrey model that has the same structure
as init_sys.

sys = greyest(data,init_sys,opt) estimates a linear grey-box
model using the option set, opt, to configure the estimation options.

Input
Arguments

data

Estimation data.

The dimensions of the inputs and outputs of data and init_sys must
match.

For time-domain estimation, data is an iddata object containing the
input and output signal values.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its Domain property set to 'Frequency'

init_sys

Identified linear grey-box model that configures the initial
parameterization of sys.

init_sys, an idgrey model, must have the same input and output
dimensions as data.

opt

Estimation options.

1-279

greyest

opt is an option set, created using greyestOptions, which specifies
options including:

• Estimation objective

• Initialization choice

• Disturbance model handling

• Numerical search method to be used in estimation

Output
Arguments

sys

Estimated linear grey-box model.

sys is an idgrey model that encapsulates the estimated linear grey-box
model.

Examples Estimate Grey-Box Model

Estimate the parameters of a DC motor using the linear grey-box
framework.

Load the measured data.

load(fullfile(matlabroot, 'toolbox', 'ident', ...
'iddemos', 'data', 'dcmotordata'));

data = iddata(y, u, 0.1, 'Name', 'DC-motor');
set(data, 'InputName', 'Voltage', 'InputUnit', 'V');
set(data, 'OutputName', {'Angular position', 'Angular velocity'});
set(data, 'OutputUnit', {'rad', 'rad/s'});
set(data, 'Tstart', 0, 'TimeUnit', 's');

data is an iddata object containing the measured data for the outputs,
the angular position, the angular velocity. It also contains the input,
the driving voltage.

Create a grey-box model representing the system dynamics.

1-280

greyest

For the DC motor, choose the angular position (rad) and the angular
velocity (rad/s) as the outputs and the driving voltage (V) as the input.
Set up a linear state-space structure of the following form:

x t x t G u t

y t

() () ()

()

0 1

0
1

0

1 0
0 1

 x t()

τ is the time-constant of the motor in seconds, and G is the static gain
from the input to the angular velocity in rad/(V*s) .

G = 0.25;
tau = 1;

init_sys = idgrey('motor',tau,'cd',G,0);

The governing equations in state-space form are represented in the
MATLAB file motor.m. To view the contents of this file, enter edit
motor.m at the MATLAB command prompt.

G is a known quantity that is provided to motor.m as an optional
argument.

τ is a free estimation parameter.

init_sys is an idgrey model associated with motor.m.

Estimate τ.

sys = greyest(data,init_sys);

sys is an idgrey model containing the estimated value of τ.

To obtain the estimated parameter values associated with sys, use
getpvec(sys).

Analyze the result.

1-281

greyest

opt = compareOptions('InitialCondition','zero');
compare(data,sys,Inf,opt)

sys provides a 98.35% fit for the angular position and an 84.42% fit for
the angular velocity.

See Also idgrey | greyestOptions | iddata | idfrd | ssest | idnlgrey
| pem

Related
Examples

• “Estimate Model Using Zero/Pole/Gain Parameters”

1-282

greyestOptions

Purpose Option set for greyest

Syntax opt = greyestOptions
opt = greyestOptions(Name,Value)

Description opt = greyestOptions creates the default options set for greyest.

opt = greyestOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialState’

Specify how initial states are handled during estimation.

InitialState requires one of the following strings:

• 'model' — The initial state is parameterized by the ODE file used
by the idgrey model. The ODE file must return 6 or more output
arguments.

• 'zero' — The initial state is set to zero. Any values returned by
the ODE file are ignored.

• 'estimate' — The initial state is treated as an independent
estimation parameter.

• 'backcast' — The initial state is estimated using the best least
squares fit.

• 'auto'— The software chooses the method to handle initial states
based on the estimation data.

1-283

greyestOptions

• Vector of doubles — Specify a column vector of length Nx, where Nx
is the number of states. For multiexperiment data, specify a matrix
with Ne columns, where Ne is the number of experiments. The
specified values are treated as fixed values during the estimation
process.

Default: 'auto'

’DisturbanceModel’

Specify how the disturbance component (K) is handled during
estimation.

DisturbanceModel requires one of the following strings:

• 'model' — K values are parameterized by the ODE file used by
the idgrey model. The ODE file must return 5 or more output
arguments.

• 'fixed'— The value of the k property of the idgrey model is fixed
to its original value.

• 'none' — K is fixed to zero. Any values returned by the ODE file
are ignored.

• 'estimate'— K is treated as an independent estimation parameter.

• 'auto' — The software chooses the method to handle how the
disturbance component is handled during estimation. The software
uses the 'model' method if the ODE file returns 5 or more output
arguments with a finite value for K. Else, the software uses the
'fixed' method.

Note Noise model cannot be estimated using frequency domain data.

Default: 'auto'

’Focus’

1-284

greyestOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction' — Same as 'simulation', except that it does not
enforce the stability of the resulting model.

• 'stability' — Same as 'prediction' but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

wl and wh represent upper and lower limits of a passband. For
a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

1-285

greyestOptions

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

1-286

greyestOptions

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Specifies criterion used during minimization.

OutputWeight can have the following values:

• 'noise'— Minimize det(’*)E E , where E represents the prediction
error. This choice is optimal in a statistical sense and leads to the
maximum likelihood estimates in case nothing is known about the
variance of the noise. This option uses the inverse of the estimated
noise variance as the weighting function.

1-287

greyestOptions

• Positive semidefinite symmetric matrix (W) — Minimize the trace of
the weighted prediction error matrix trace(E'*E*W). E is the matrix
of prediction errors, with one column for each output. W is the positive
semidefinite symmetric matrix of size equal to the number of outputs.
Use W to specify the relative importance of outputs in multiple-input,
multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

• []— The software chooses between the 'noise' or using the identity
matrix for W.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod is a string that can take the following values:

• gn — The subspace Gauss-Newton direction.

• gna — An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1].

• lm — Uses the Levenberg-Marquardt method.

• lsqnonlin — Uses the trust region reflective algorithm. Requires
Optimization Toolbox software.

• grad— The steepest descent gradient search method.

• auto — The algorithm chooses one of the preceding options.
The descent direction is calculated using gn, gna, lm, and grad
successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-288

greyestOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-289

greyestOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-290

greyestOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-291

greyestOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [2].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial state.

The initial state is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-292

greyestOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialState is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for greyest.

Examples Create Default Options Set for Linear Grey Box Estimation

opt = greyestOptions;

Specify Options for Linear Grey Box Estimation

Create an options set for greyest using the 'backcast' algorithm to
initialize the state. Specify Display as 'on'.

opt = greyestOptions('InitialState','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = greyestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

References [1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

1-293

greyestOptions

See Also greyest | idgrey | idnlgrey | pem | ssest

1-294

hasdelay

Purpose True for linear model with time delays

Syntax B = hasdelay(sys)
B = hasdelay(sys,'elem')

Description B = hasdelay(sys) returns 1 (true) if the model sys has input delays,
output delays, or I/O delays, and 0 (false) otherwise. If sys is a model
array, then B is true if least one model in sys has delays.

B = hasdelay(sys,'elem') returns a logical array of the same size as
the model array sys. The logical array indicates which models in sys
have delays.

See Also absorbDelay | totaldelay

1-295

idarx

Purpose Multiple-output ARX polynomials, impulse response, or step response
model

Note idarx will be removed in a future release. Use idpoly instead.

Syntax m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)

Description idarx creates an object containing parameters that describe the general
multiple-input, multiple-output model structure of ARX type.

y t A y t A y t A y t na

B u t B u t
na() () () ... ()

() () ...
+ − + − + + − =

+ − + +
1 2

0 1

1 2
1 BB u t nb e tnb () ()− +

Here Ak and Bk are matrices of dimensions ny-by-ny and ny-by-nu,
respectively. (ny is the number of outputs, that is, the dimension of the
vector y(t), and nu is the number of inputs.)

The arguments A and B are 3-D arrays that contain the A matrices and
the B matrices of the model in the following way.

A is an ny-by-ny-by-(na+1) array such that:

A(:,:,k+1) = Ak
A(:,:,1) = eye(ny)

Similarly B is an ny-by-nu-by-(nb+1) array with:

B(:,:,k+1) = Bk

Note that A always starts with the identity matrix, and that delays in
the model are defined by setting the corresponding leading entries in B
to zero. For a multivariate time series, take B = [].

1-296

idarx

The optional property NoiseVariance sets the covariance matrix of
the driving noise source e(t) in the model above. The default value is
the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time
models (Ts = 0) are not supported.

The use of idarx is twofold. You can use it to create models that are
simulated (using sim) or analyzed (using bode, pzmap, etc.). You can
also use it to define initial value models that are further adjusted to
data (using arx). The free parameters in the structure are consistent
with the structure of A and B; that is, leading zeros in the rows of B are
regarded as fixed delays, and trailing zeros in A and B are regarded as a
definition of lower-order polynomials. These zeros are fixed, while all
other parameters are free.

For a model with one output, ARX models can be described both as
idarx and idpoly models. The internal representation is different,
however.

idarx
Properties

• A, B: The A and B polynomials as 3-D arrays, described above.

• dA, dB: The standard deviations of A and B. Same format as A and B.
Cannot be set.

• na, nb, nk: The orders and delays of the model. na is an ny-by-ny
matrix whose i-j entry is the order of the polynomial corresponding to
the i-j entry of A. Similarly nb is an ny-by-nu matrix with the orders
of B. nk is also an ny-by-nu matrix, whose i-j entry is the delay from
input j to output i, that is, the number of leading zeros in the i-j
entry of B.

• InitialState: This describes how the initial state (initial values in
filtering, etc.) should be handled. For time-domain applications,
this is typically handled by starting the filtering when all data are
available. For frequency-domain data, you must estimate initial
states. The possible values of InitialState are 'zero', 'estimate',
and 'auto' (which makes a data-dependent choice between zero
and estimate).

1-297

idarx

You can set and retrieve all properties either with the set and get
commands or by subscripts. Autofill applies to all properties and values,
and they are case insensitive.

For a complete list of property values, use get(m). To see possible value
assignments, use set(m). See also idprops idarx.

idarx
Definition
of States

The states of an idarx model are defined as those corresponding to the
model obtained by converting them to the state-space format using the
idss command. For example, if you have an idarx model defined by
m1 = idarx(A,B,1), then the initial states of this model correspond to
those of m2 = idss(m1). The concept of states is useful for functions
such as sim, predict, compare and findstates.

Examples Simulate a second-order ARX model with one input and two outputs,
and then estimate a model using the simulated data.

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

arx | arxdata | | idpoly

How To • “Using Linear Model for Nonlinear ARX Estimation”

1-298

iddata

Purpose Time- or frequency-domain data

Syntax data = iddata(y,[],Ts)
data = iddata(y,u,Ts)
data = iddata(y,u,Ts,'Frequency',W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data = iddata(idfrd_object)

Description data = iddata(y,[],Ts) creates an iddata object for time-series data,
containing a time-domain output signal y and an empty input signal
[], respectively. Ts specifies the sampling interval of the experimental
data.

data = iddata(y,u,Ts) creates an iddata object containing a
time-domain output signal y and input signal u, respectively. Ts
specifies the sampling interval of the experimental data.

data = iddata(y,u,Ts,'Frequency',W) creates an iddata object
containing a frequency-domain output signal y and input signal u,
respectively.Ts specifies the sampling interval of the experimental data.
W specifies the iddata property 'frequency' as a vector of frequencies.

data = iddata(y,u,Ts,'P1',V1,...,'PN',VN) creates an iddata
object containing a time-domain or frequency-domain output signal y
and input signal u, respectively. Ts specifies the sampling interval of
the experimental data. 'P1',V1,...,'PN',VN are property-value pairs,
as described in “Properties” on page 1-303.

data = iddata(idfrd_object) transforms an idfrd object to a
frequency-domain iddata object.

Arguments y
Name of MATLAB variable that represents the output
signal from a system. Sets the OutputData iddata property.
For a single-output system, this is a column vector. For a
multiple-output system with Ny output channels and NT time
samples, this is an NT-by-Ny matrix.

1-299

iddata

Note Output data must be in the same domain as input data.

u
Name of MATLAB variable that represents the input signal to a
system. Sets the InputData iddata property. For a single-input
system, this is a column vector. For a multiple-output system
with Nu output channels and NT time samples, this is an NT-by-Nu
matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds.
Default value is 1. For continuous-time data in the frequency
domain, set Ts to 0.

'P1',V1,...,'PN',VN
Pairs of iddata property names and property values.

idfrd_object
Name of idfrd data object.

Constructor Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data
into the MATLAB workspace, as described in “Time-Domain Data
Representation”.

1-300

iddata

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:

data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”
on page 1-303.

Here, Ts is the sampling time, or the time interval, between successive
data samples:

• For uniformly sampled data, Ts is a scalar value equal to the
sampling interval of your experiment.

• For nonuniformly sampled data, Ts is [], and the value of the
SamplingInstants property is a column vector containing individual
time values. For example:

data = iddata(y,u,[],'SamplingInstants',TimeVector)

where TimeVector represents a vector of time values.

Note You can modify the property SamplingInstants by setting it
to a new vector with the length equal to the number of data samples.

The default time unit is seconds, but you can specify any unit string
using the TimeUnit property. For more information about iddata
time properties, see “Modifying Time and Frequency Vectors”.

1-301

iddata

To represent time-series data, use the following syntax:

ts_data = iddata(y,[],Ts)

where y is the output data, [] indicates empty input data, and Ts
is the sampling interval.

The following example shows how to create an iddata object using
single-input/single-output (SISO) data from dryer2.mat. The input and
output each contain 1000 samples with the sampling interval of 0.08
second.

load dryer2 % Load input u2 and output y2.
data = iddata(y2,u2,0.08) % Create iddata object.

MATLAB returns the following output:

Time domain data set with 1000 samples.
Sampling interval: 0.08

Outputs Unit (if specified)
y1

Inputs Unit (if specified)
u1

The default channel name 'y1' is assigned to the first and only output
channel. When y2 contains several channels, the channels are assigned
default names 'y1','y2','y2',...,'yn'. Similarly, the default
channel name 'u1' is assigned to the first and only input channel. For
more information about naming channels, see “Naming, Adding, and
Removing Data Channels”.

1-302

iddata

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output
signals at specific frequency values. To represent frequency-domain
data, use the following syntax to create the iddata object:

data = iddata(y,u,Ts,'Frequency',w)

'Frequency' is an iddata property that specifies the frequency values
w, where w is the frequency column vector that defines the frequencies
at which the Fourier transform values of y and u are computed. Ts is
the time interval between successive data samples in seconds for the
original time-domain data. w, y, and u have the same number of rows.

Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see
“Modifying Time and Frequency Vectors”.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata
object, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”
on page 1-303.

Properties After creating the object, you can use get or dot notation to access the
object property values.

Use set or dot notation to set a property of an existing object.

The following table describes iddata object properties and their
values. These properties are specified as property-value arguments
'P1',V1,...,'PN',VN’ in the iddata constructor, or you can set them
using the set command or dot notation. In the list below, N denotes

1-303

iddata

the number of data samples in the input and output signals, ny is the
number of output channels, nu is the number of input channels, and
Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the
entire property name. However, the portion you enter must by enough
to uniquely identify the property.

Property Name Description Value

Domain Specifies whether the data
is in the time domain or
frequency domain.

• 'Frequency' —
Frequency-domain data.

• 'Time' (Default) —
Time-domain data.

ExperimentName Name of each data set
contained in the iddata
object.

For Ne experiments, a
1-by-Ne cell array of strings.
Each cell contains the
name of the corresponding
experiment. Default names
are {'Exp1', 'Exp2',...}.

Frequency (Frequency-domain data
only) Frequency values
for defining the Fourier
Transforms of the signals.

For a single experiment, this
is an N-by-1 vector. For Ne
experiments, a 1-by-Ne cell
array and each cell contains
the frequencies of the
corresponding experiment.

InputData Name of MATLAB variable
that stores the input signal
to a system.

For nu input channels and
N data samples, this is an
N-by-nu matrix.

1-304

iddata

Property Name Description Value

InputName Specifies the names of
individual input channels.

Cell array of length
nu-by-1 contains the
name string of each input
channel. Default names are
{'u1';'u2';...}.

InputUnit Specifies the units of each
input channel.

Cell array of length nu-by-1.
Each cell contains a string
that specifies the units of
each input channel.

InterSample Specifies the behavior of
the input signals between
samples for transformations
between discrete-time and
continuous-time.

For a single experiment:

• zoh— (Default)
Zero-order hold
maintains a
piecewise-contant input
signal between samples.

• foh— First-order
hold maintains a
piecewise-linear input
signal between samples.

• bl— Band-limited
behavior specifies that
the continuous-time
input signal has zero
power above the Nyquist
frequency.

For Ne experiments,
InterSample is an nu-by-Ne
cell array. Each cell
contains one of these values
corresponding to each
experiment.

1-305

iddata

Property Name Description Value

Name Name of the data set. Text string.

Notes Comments about the data
set.

Text string.

OutputData Name of MATLAB variable
that stores the output signal
from a system.

For ny output channels and
N samples, this is an N-by-ny
matrix.

OutputName For a multiple-output
system, specifies the
names of individual output
channels.

Cell array of length
ny-by-1 contains the name
string of each output
channel. Default names are
{'y1';'y2';...}.

OutputUnit Specifies the units of each
output channel.

For ny output channels, a
cell array of length ny-by-1.
Each cell contains a string
that specifies the units of
the corresponding output
channel.

Period Period of the input signal. (Default) For a nonperiodic
signal, set to inf. For a
multiple-input signal, this
is an nu-by-1 vector and
the kth entry contains the
period of the kth input.
For Ne experiments, this
is a 1-by-Ne cell array and
each cell contains a scalar
or vector of periods for the
corresponding experiment.

1-306

iddata

Property Name Description Value

SamplingInstants (Time-domain data only)
The time values in the time
vector calculated from the
properties Tstart and Ts.

For a single experiment,
this is an N-by-1 vector.
For Ne experiments, this
is a 1-by-Ne cell array
and each cell contains the
sampling instants of the
corresponding experiment.

TimeUnit (Time-domain data only)
Time unit.

A string that specifies the
time unit for the time
vector. Specify TimeUnit
as one of the following:
'nanoseconds','microseconds','milli
(default),
'minutes','hours',
'days', 'weeks', 'months'
or 'years'.

Ts Time interval between
successive data samples
in seconds. Must be
specified for both time-
and frequency-domain data.
For frequency-domain, it
is used to compute Fourier
transforms of the signals
as discrete-time Fourier
transforms (DTFT) with the
indicated sampling interval.

Note Your data must be
uniformly sampled.

Default value is 1. For
continuous-time data in
the frequency domain,
set to 0; the inputs and
outputs are interpreted as
continuous-time Fourier
transforms of the signals.
Note that Ts is essential also
for frequency-domain data,
for proper interpretation of
how the Fourier transforms
were computed: They are
interpreted as discrete-time
Fourier transforms
(DTFT) with the indicated
sampling interval.. For
multiple-experiment data,
Ts is a 1-by-Ne cell array

1-307

iddata

Property Name Description Value

and each cell contains the
sampling interval of the
corresponding experiment.

Tstart (Time-domain data only)
Specifies the start time of
the time vector.

For a single experiment,
this is a scalar. For Ne
experiments, Tstart is a
1-by-Ne cell array and each
cell contains the starting
time of the corresponding
experiment.

FrequencyUnit (Frequency-domain data
only) Frequency unit.

Specifies the units of the
frequency vector (see
Frequency). Specify
as one of the following:
'rad/TimeUnit',
'cycles/TimeUnit',
'rad/s', 'Hz', 'kHz',
'MHz', 'GHz', or 'rpm'.
The units 'rad/TimeUnit'
and 'cycles/TimeUnit'
are relative to the time
units specified in the
TimeUnitproperty. Setting
FrequencyUnit does not
change the frequency
vector. To convert the
units and automatically
scale frequency points, use
chgFreqUnit.

UserData Additional comments. Text string.

To view the properties, use the get command. For example:

load dryer2 % Load input u2 and output y2

1-308

iddata

data = iddata(y2,u2,0.08); % Create iddata object
get(data) % Get property values of data

You can specify properties when you create an iddata object using the
constructor syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

To change property values for an existing iddata object, use the set
command or dot notation. For example, to change the sampling interval
to 0.05, type the following at the prompt:

set(data,'Ts',0.05)

or equivalently:

data.ts = 0.05

Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the
property.

Tip You can use data.y as an alternative to data.OutputData to access
the output values, or use data.u as an alternative to data.InputData
to access the input values.

An iddata object containing frequency-domain data includes
frequency-specific properties, such as Frequency for the frequency
vector and Units for frequency units (instead of Tstart and
SamplingIntervals). For example:

% Load input u2 and output y2
load dryer2;

% Create iddata object
data = iddata(y2,u2,0.08);

% Take the Fourier transform of the data

1-309

iddata

% transforming it to frequency domain
data = fft(data)

% Get property values of data
get(data)

See Also advice | detrend | fcat | getexp | idfilt | idfrd | plot | resample
| size

1-310

ident

Purpose Open System Identification Tool GUI

Syntax ident
ident(session,path)

Description ident opens the System Identification Tool GUI.

ident(session,path) opens the saved session session in the System
Identification Tool GUI. path specifies the location of this file. Omit
path when the session file is on MATLABPATH.

You can also open the System Identification Tool interactively. On the
Apps tab of the MATLAB desktop, in the Apps section, click System
Identification.

Input
Arguments

session

Session file to be opened using the System Identification Tool GUI.

You create a session file by saving a running session of the GUI.
session contains the set of data objects, models and layout settings in
use at the time of saving. If the GUI is already open, ident(session)
merges the contents of the new session file with those already present
in the GUI.

path

Location of session file.

You do not need to specify path if session is on the MATLAB path.

Examples Open a saved session iddata1:

ident('iddata1.sid')

Open a saved session mydata in a specified folder:

ident('mydata.sid','\matlab\data\cdplayer\')

See Also midprefs

1-311

ident

How To • “Working with the System Identification Tool GUI”

1-312

identpref

Purpose Set System Identification Toolbox preferences

Syntax identpref

Description identpref opens a Graphical User Interface (GUI) which allows you to
change the System Identification Toolbox preferences. Preferences set
in this GUI affect future plots only (existing plots are not altered).

Your preferences are stored to disk (in a system-dependent location)
and will be automatically reloaded in future MATLAB sessions using
the System Identification Toolbox software.

1-313

idfilt

Purpose Filter data using user-defined passbands, general filters, or Butterworth
filters

Syntax Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter,causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

Description Z is the data, defined as an iddata object. Zf contains the filtered data
as an iddata object. The filter can be defined in three ways:

• As an explicit system that defines the filter,

filter = idm or filter = {num,den} or filter = {A,B,C,D}

idm can be any SISO identified linear model or LTI model object.
Alternatively the filter can be defined as a cell array {A,B,C,D}
of SISO state-space matrices or as a cell array {num,den} of
numerator/denominator filter coefficients.

• As a vector or matrix that defines one or several passbands,

filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]

The matrix is n-by-2, where each row defines a passband in rad/s. A
filter is constructed that gives the union of these passbands. For
time-domain data, it is computed as cascaded Butterworth filters or
order NF. The default value of NF is 5.

For example, to define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2,Nyqf]

where Nyqf is the Nyquist frequency.

• For frequency-domain data, only the frequency response of the filter
can be specified:

filter = Wf

1-314

idfilt

Here Wf is a vector of possibly complex values that define the filter’s
frequency response, so that the inputs and outputs at frequency
Z.Frequency(kf) are multiplied by Wf(kf). Wf is a column vector
of length = number of frequencies in Z. If the data object has several
experiments, Wf is a cell array of length = # of experiments in Z.

For time-domain data, the filtering is carried out in the time domain
as causal filtering as default. This corresponds to a last argument
causality = 'causal'. With causality = 'noncausal', a
noncausal, zero-phase filter is used for the filtering (corresponding to
filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency
response of the filter. With the filters defined as passband, this gives
ideal, zero-phase filtering (“brickwall filters”). Frequencies that have
been assigned zero weight by the filter (outside the passband, or via the
frequency response) are removed from the iddata object Zf.

It is common practice in identification to select a frequency band where
the fit between model and data is concentrated. Often this corresponds
to bandpass filtering with a passband over the interesting breakpoints
in a Bode diagram. For identification where a disturbance model is also
estimated, it is better to achieve the desired estimation result by using
the property 'Focus' than just to prefilter the data. The proper values
for 'Focus' are the same as the argument filter in idfilt.

Algorithms The Butterworth filter is the same as butter in the Signal Processing
Toolbox product. Also, the zero-phase filter is equivalent to filtfilt
in that toolbox.

References Ljung (1999), Chapter 14.

See Also iddata | resample

1-315

idfrd

Purpose Frequency-response data or model

Syntax h = idfrd(Response,Freq,Ts)
h = idfrd(Response,Freq,Ts,...

'CovarianceData',Covariance,'SpectrumData',Spec,...
'NoiseCovariance',Speccov)

h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN)

h = idfrd(mod)
h = idfrd(mod,Freqs)

Description h = idfrd(Response,Freq,Ts) constructs an idfrd object that stores
the frequency response Response of a linear system at frequency values
Freq. Ts is the sampling time interval. For a continuous-time system,
set Ts=0.

h = idfrd(Response,Freq,Ts,...
'CovarianceData',Covariance,'SpectrumData',Spec,...
'NoiseCovariance',Speccov) also stores the uncertainty of the

response Covariance, the spectrum of the additive disturbance (noise)
Spec, and the covariance of the noise Speccov.

h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN) constructs an idfrd object that stores a

frequency-response model with properties specified by the idfrd model
property-value pairs.

h = idfrd(mod) converts a System Identification Toolbox or Control
System Toolbox™ linear model to frequency-response data at default
frequencies, including the output noise spectra and their covariance.

h = idfrd(mod,Freqs) converts a System Identification Toolbox or
Control System Toolbox linear model to frequency-response data at
frequencies Freqs.

For a model

y t G q u t H q e t() () () () ()= +

1-316

idfrd

stores the transfer function estimate G ei() , as well as the spectrum of
the additive noise (Φv) at the output

Φv
i TT H e() () =

2

where λ is the estimated variance of e(t), and T is the sampling interval.

Creating idfrd from Given Responses

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being
the number of outputs, nu the number of inputs, and Nf the number of
frequencies (that is, the length of Freqs). Response(ky,ku,kf) is thus
the complex-valued frequency response from input ku to output ky at
frequency ω=Freqs(kf). When defining the response of a SISO system,
Response can be given as a vector.

Freqs is a column vector of length Nf containing the frequencies of the
response.

Ts is the sampling interval. Ts = 0 means a continuous-time model.

Covariance is a 5-D array containing the covariance of the frequency
response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is
such that Covariance(ky,ku,kf,:,:) is the 2-by-2 covariance matrix
of the response Response(ky,ku,kf). The 1-1 element is the variance
of the real part, the 2-2 element is the variance of the imaginary part,
and the 1-2 and 2-1 elements are the covariance between the real and
imaginary parts. squeeze(Covariance(ky,ku,kf,:,:)) thus gives the
covariance matrix of the corresponding response.

The format for spectrum information is as follows:

spec is a 3-D array of dimension ny-by-ny-by-Nf, such that
spec(ky1,ky2,kf) is the cross spectrum between the noise at output
ky1 and the noise at output ky2, at frequency Freqs(kf). When ky1 =
ky2 the (power) spectrum of the noise at output ky1 is thus obtained.
For a single-output model, spec can be given as a vector.

1-317

idfrd

speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that
speccov(ky1,ky1,kf) is the variance of the corresponding power
spectrum.

If only SpectrumData is to be packaged in the idfrd object, set
Response = [].

Creating idfrd from a Given Model

idfrd can also be computed from a given linear identified model, mod.

If the frequencies Freqs are not specified, a default choice is made based
on the dynamics of the model mod.

The estimated covariances are computed using the Gauss approximation
formula from the uncertainty information in mod. For grey-box models
(idgrey), numerical differentiation is applied. The step sizes for the
numerical derivatives are determined by nuderst.

Intersample behavior: For discrete-time frequency response data
(Ts>0), you can also specify the intersample behavior of the input signal
that was in effect when the samples were collected originally from an
experiment. To specify the intersample behavior, use:

mf = idfrd(Response,Freq,Ts,'InterSample','zoh');

For multi-input systems, specify the intersample behavior using an
Nu-by-1 cell array, where Nu is the number of inputs. The InterSample
property is irrelevant for continuous-time data.

Frequency responses for submodels can be obtained by the standard
subreferencing, h = idfrd(m(2,3)). h = idfrd(m(:,[])) gives an h
that just contains SpectrumData.

The idfrd models can be graphed with bode, spectrum, and nyquist,
which all accept mixtures of parametric models, such as idtf and idfrd
models as arguments. Note that spa, spafdr, and etfe return their
estimation results as idfrd objects.

1-318

idfrd

Constructor The idfrd represents complex frequency-response data. Before you
can create an idfrd object, you must import your data as described in
“Frequency-Response Data Representation”.

Note The idfrd object can only encapsulate one frequency-response
data set. It does not support the iddata equivalent of multiexperiment
data.

Use the following syntax to create the data object fr_data:

fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of
input channels, and nf is a vector of frequency values. response is an
ny-by-nu-by-nf 3-D array. f is the frequency vector that contains the
frequencies of the response.Ts is the sampling time, which is used when
measuring or computing the frequency response. If you are working
with a continuous-time system, set Ts to 0.

response(ky,ku,kf), where ky, ku, and kf reference the kth output,
input, and frequency value, respectively, is interpreted as the
complex-valued frequency response from input ku to output ky at
frequency f(kf).

You can specify object properties when you create the idfrd object
using the constructor syntax:

fr_data = idfrd(response,f,Ts,
'Property1',Value1,...,'PropertyN',ValueN)

Properties After creating the object, you can use get or dot notation to access the
object property values.

Use set or dot notation to set a property of an existing object.

1-319

idfrd

Property Name Description

ResponseData 3-D array of the complex-valued
frequency response as described
above. For SISO systems use
Response(1,1,:) to obtain a
vector of the response data.

Frequency Column vector containing
the frequencies at which the
responses are defined.

CovarianceData 5-D array of the covariance
matrices of the response data as
described above.

SpectrumData 3-D array containing power
spectra and cross spectra of the
output disturbances (noise) of the
system.

NoiseCovariance 3-D array containing the
variances of the power spectra, as
explained above.

FrequencyUnit Unit of the frequency
vector. Specify as one of the
following: 'rad/TimeUnit',
'cycles/TimeUnit',
'rad/s', 'Hz', 'kHz',
'MHz', 'GHz', or 'rpm'. The
units 'rad/TimeUnit' and
'cycles/TimeUnit' are relative
to the time units specified
in TimeUnit. Changing
this property changes the
overall system behavior.
Use chgFreqUnit to convert
between frequency units without
modifying system behavior.

1-320

idfrd

Property Name Description

Ts Scalar denoting the sampling
interval of the model whose
frequency response is
stored. 'Ts' = 0 means a
continuous-time model.

Name An optional name for the object.

InputName String or cell array containing the
names of the input channels. It
has as many entries as there are
input channels.

OutputName Correspondingly for the output
channels.

InputUnit Units in which the input channels
are measured. It has the same
format as 'InputName'.

OutputUnit Correspondingly for the output
channels.

InputDelay Row vector of length equal to
the number of input channels.
Contains the delays from the
input channels. These should
thus be appended as phase lags
when the response is calculated.
This is done automatically by
freqresp, bode, and nyquist.

1-321

idfrd

Property Name Description

InterSample Intersample behavior of inputs.
Specifies the behavior of
the input signals between
samples for transformations
between discrete-time and
continuous-time. This property
is meaningful for discrete-time
idfrd models only.Specify
InterSample as one of the
following:

• 'zoh'— The input signal used
for construction/estimation of
the frequency response data
was subject to a zero-order-hold
filter.

• 'foh'— The input signal was
subject to a first-order-hold
filter.

• 'bl' — The input signal has
no power above the Nyquist
frequency (pi/sys.Ts rad/s).
This is typically the case
when the input signal is
measured experimentally
using an anti-aliasing filter
and a sampler. Ideally, treat
the data as continuous-time.
That is, if the signals used for
the estimation of the frequency
response were subject to
anti-aliasing filters, set sys.Ts
to zero.

1-322

idfrd

Property Name Description

For multi-input data, specify
InterSample as an Nu-by-1 cell
array, where Nu is the number of
inputs.

Notes An arbitrary field to store extra
information and notes about the
object.

UserData An arbitrary field for any possible
use.

Report Information about the estimation
process that is behind the
frequency data. It contains the
following fields:
• Status: Specifies whether the
model was created directly,
transformed or estimated.

• Method: The identification
routine that created the model.

• WindowSize: If the model was
estimated by spa, spafdr, or
etfe, the size of window (input
argument M, the resolution
parameter) that was used.
This is scalar or a vector.

• DataUsed: Information on the
estimation data such as its
name, type, sample time and
intersample behavior.

To view the properties of the idfrd object, you can use the get
command. The following example shows how to create an idfrd object

1-323

idfrd

that contains 100 frequency-response values with a sampling time
interval of 0.08 s and get its properties:

% Create the idfrd data object
fr_data = idfrd(response,f,0.08)

% Get property values of data
get(fr_data)

response and f are variables in the MATLAB Workspace browser,
representing the frequency-response data and frequency values,
respectively.

To change property values for an existing idfrd object, use the set
command or dot notation. For example, to change the name of the
idfrd object, type the following command sequence at the prompt:

% Set the name of the f_data object
set(fr_data,'name','DC_Converter')

% Get fr_data properties and values
get(fr_data)

Property names are not case sensitive. You do not need to type the
entire property name if the first few letters uniquely identify the
property.

If you import fr_data into the System Identification Tool GUI, this
data has the name DC_Converter in the GUI, and not the variable
name fr_data.

SubreferencingThe different channels of the idfrd are retrieved by subreferencing.

h(outputs,inputs)

h(2,3) thus contains the response data from input channel 3 to output
channel 2, and, if applicable, the output spectrum data for output
channel 2. The channels can also be referred to by their names, as in
h('power',{'voltage', 'speed'}).

1-324

idfrd

Horizontal
Concatenation

Adding input channels,

h = [h1,h2,...,hN]

creates an idfrd model h, with ResponseData containing all the input
channels in h1,...,hN. The output channels of hk must be the same, as
well as the frequency vectors. SpectrumData is ignored.

Vertical
Concatenation

Adding output channels,

h = [h1;h2;... ;hN]

creates an idfrd model h with ResponseData containing all the output
channels in h1, h2,...,hN. The input channels of hk must all be the
same, as well as the frequency vectors. SpectrumData is also appended
for the new outputs. The cross spectrum between output channels of
h1, h2,...,hN is then set to zero.

Converting
to iddata

You can convert an idfrd object to a frequency-domain iddata object by

Data = iddata(Idfrdmodel)

See iddata.

Examples Compare the results from spectral analysis and an ARMAX model.

load iddata1 z1;
m = armax(z1,[2 2 2 1]);
g = spa(z1)
g = spafdr(z1,[],{1e-3,10})
bode(g,m)

See Also bode | etfe | freqresp | nyquist | spa | spafdr | tfest

1-325

idgrey

Purpose Linear ODE (grey-box model) with identifiable parameters

Syntax sys = idgrey(odefun,parameters,fcn_type)
sys = idgrey(odefun,parameters,fcn_type,optional_args)
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)
sys =
idgrey(odefun,parameters,fcn_type,optional_args,Ts,Name,

Value)

Description sys = idgrey(odefun,parameters,fcn_type) creates a linear
grey-box model with identifiable parameters, sys. odefun specifies the
user-defined function that relates the model parameters, parameters,
to its state-space representation.

sys = idgrey(odefun,parameters,fcn_type,optional_args)
creates a linear grey-box model with identifiable parameters using the
optional arguments required by odefun.

sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts)
creates a linear grey-box model with identifiable parameters with the
specified sample time, Ts.

sys =
idgrey(odefun,parameters,fcn_type,optional_args,Ts,Name,Value)
creates a linear grey-box model with identifiable parameters with
additional options specified by one or more Name,Value pair
arguments.

Object
Description

An idgrey model represents a system as a continuous-time or
discrete-time state-space model with identifiable (estimable)
coefficients.

A state-space model of a system with input vector, u, output vector, y,
and disturbance, e, takes the following form in continuous time:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

1-326

idgrey

In discrete time, the state-space model takes the form:

x k Ax k Bu k Ke k
y k Cx k Du k e k
[] [] [] []
[] [] [] []

1

For idgrey models, the state-space matrices A, B, C, and D
are expressed as a function of user-defined parameters using
a MATLAB function. You access estimated parameters using
sys.Structures.Parameters, where sys is an idgrey model.

Use an idgrey model when you know the system of equations
governing the system dynamics explicitly. You should be able to
express these dynamics in the form of ordinary differential or difference
equations. You specify complex relationships and constraints among
the parameters that cannot be done through structured state-space
models (idss).

You can create an idgrey model using the idgrey command. To
do so, write a MATLAB function that returns the A, B, C, and D
matrices for given values of the estimable parameters and sampling
time. The MATLAB function can also return the K matrix and accept
optional input arguments. The matrices returned may represent a
continuous-time or discrete-time model, as indicated by the sampling
time.

Use the estimating functions pem or greyest to obtain estimated values
for the unknown parameters of an idgrey model.

You can convert an idgrey model into other dynamic systems, such as
idpoly, idss, tf, ss etc. You cannot convert a dynamic system into an
idgrey model.

Examples Create Grey-Box Model with Estimable Parameters

Create an idgrey model to represent a DC motor. Specify the motor
time-constant as an estimable parameter and that the ODE function
can return continuous- or discrete-time state-space matrices.

Create the idgrey model.

1-327

idgrey

odefun = 'motor';
parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts);

sys is an idgrey model that is configured to use the shipped file
motor.m to return the A, B, C, D, and K matrices. motor.m also returns
the initial conditions, X0. The motor constant, τ, is defined in motor.m
as an estimable parameter, and parameters = 1 specifies its initial
value as 1.

You can use pem or greyest to refine the estimate for τ.

Configure Estimable Parameter of Grey-Box Model

Specify the known parameters of a grey-box model as fixed for
estimation. Also specify a minimum bound for an estimable parameter.

Create an ODE file that relates the pendulum model coefficients to its
state-space representation.

function [A,B,C,D] = LinearPendulum(m,g,l,b,Ts)
A = [0 1; -g/l, -b/m/l^2];
B = zeros(2,0);
C = [1 0];
D = zeros(1,0);
end

Save this function as LinearPendulum.m such that it is in the MATLAB
search path.

In this function:

• m is the pendulum mass.

• g is the gravitational acceleration.

• l is the pendulum length.

• b is the viscous friction coefficient.

1-328

idgrey

• Ts is the model sampling period.

Create a linear grey-box model associated with the ODE function.

odefun = 'LinearPendulum';

m = 1;
g = 9.81;
l = 1;
b = 0.2;
parameters = {'mass', m; 'gravity', g; 'length', l; 'friction', b}

fcn_type = 'c';

sys = idgrey(odefun,parameters,fcn_type);

sys has four parameters.

Specify the known parameters, m, g, and l, as fixed for estimation.

sys.Structure.Parameters(1).Free = false;
sys.Structure.Parameters(2).Free = false;
sys.Structure.Parameters(3).Free = false;

m, g, and l are the first three parameters of sys.

Specify a zero lower bound for b, the fourth parameter of sys.

sys.Structure.Parameters(4).Minimum = 0;

Similarly, to specify an upper bound for an estimable parameter, use
the Maximum field of the parameter.

Specify Additional Attributes of Grey-Box Model

Create a grey-box model with identifiable parameters. Name the input
and output channels of the model, and specify seconds for the model
time units.

1-329

idgrey

You can use Name,Value pair arguments to specify additional model
properties on model creation.

odefun = 'motor';
parameters = 1;
fcn_type = 'cd';
optional_args = 0.25;
Ts = 0;
sys = idgrey(odefun,parameters,fcn_type,optional_args,Ts,'InputName','Vol

'OutputName',{'Angular Position','Angular Velocity'});

To change or specify more attributes of an existing model, you can use
dot notation. For example:

sys.TimeUnit = 'seconds';

Create Array of Grey-Box Models

Use the stack command to create an array of linear grey-box models.

odefun1 = @motor;
parameters1 = [1 2];
fcn_type = 'cd';
optional_args1 = 1;
sys1 = idgrey(odefun1,parameters1,fcn_type,optional_args1);

odefun2 = 'motor';
parameters2 = {[1 2]};
optional_args2 = 0.5;
sys2 = idgrey(odefun2,parameters2,fcn_type,optional_args2);

sysarr = stack(1,sys1,sys2);

stack creates a 2–by-1 array of idgrey models, sysarr.

Input
Arguments

odefun

MATLAB function that relates the model parameters to its state-space
representation.

1-330

idgrey

odefun specifies, as a string, the name of a MATLAB function (.m,
.p, a function handle or .mex* file). This function establishes the
relationship between the model parameters, parameters, and its
state-space representation. The function may optionally relate the
model parameters to the disturbance matrix and initial states.

If the function is not on the MATLAB path, then specify the full file
name, including the path.

The syntax for odefun must be as follows:

[A,B,C,D] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,.

The function outputs describe the model in the following linear
state-space innovations form:

xn t Ax t Bu t Ke t x x

y t Cx t Du t e t

() () () (); ()

() () () ()

0 0

In discrete time xn(t)=x(t+Ts) and in continuous time, xn t x t() () .

par1,par2,...,parN are model parameters. Each entry may be a
scalar, vector or matrix.

Ts is the sample time.

optional_arg1,optional_arg2,... are the optional inputs that
odefun may require. The values of the optional input arguments are
unchanged through the estimation process. However, the values of
par1,par2,...,parN are updated during estimation to fit the data.
Use optional input arguments to vary the constants and coefficients
used by your model without editing odefun.

The disturbance matrix, K, and the initial state values, x0, are not
parametrized. Instead, these values are determined separately,
using the DisturbanceModel and InitialState estimation options,
respectively. For more information regarding the estimation options,
see greyestOptions.

1-331

idgrey

A good choice for achieving the best simulation results is to set the
DisturbanceModel option to 'none', which fixes K to zero.

(Optional) Parameterizing Disturbance: odefun can also return the
disturbance component, K, using the syntax:

[A,B,C,D,K] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2,..

If odefun returns a value for K that contains NaN values, then the
estimating function assumes that K is not parameterized. In this case,
the value of the DisturbanceModel estimation option determines how
K is handled.

(Optional) Parameterizing Initial State Values: To make the model
initial states, X0, dependent on the model parameters, use the following
syntax for odefun:

[A,B,C,D,K,X0] = odefun(par1,par2,...,parN,Ts,optional_arg1,optional_arg2

If odefun returns a value for X0 that contains NaN values, then the
estimating function assumes that X0 is not parameterized. In this
case, X0 may be fixed to zero or estimated separately, using the
InitialStates estimation option.

parameters

Initial values of the parameters required by odefun.

Specify parameters as a cell array containing the parameter initial
values. If your model requires only one parameter, which may itself be
a vector or a matrix, you may specify parameters as a matrix.

You may also specify parameter names using an N-by-2 cell array,
where N is the number of parameters. The first column specifies the
names, and the second column specifies the values of the parameters.

For example:

parameters = {'mass',par1;'stiffness',par2;'damping',par3}

fcn_type

1-332

idgrey

Indicates whether the model is parameterized in continuous-time,
discrete-time, or both.

fcn_type requires one of the following strings:

• 'c'— odefun returns matrices corresponding to a continuous-time
system, regardless of the value of Ts.

• 'd' — odefun returns matrices corresponding to a discrete-time
system, whose values may or may not depend on the value of Ts.

• 'cd'— odefun returns matrices corresponding to a continuous-time
system, if Ts=0.

Otherwise, if Ts>0, odefun returns matrices corresponding to a
discrete-time system. Select this option to sample your model using
the values returned by odefun, rather than using the software’s
internal sample time conversion routines.

optional_args

Optional input arguments required by odefun.

Specify optional_args as a cell array.

If odefun does not require optional input arguments, specify
optional_args as {}.

Ts

Model sampling time.

If Ts is unspecified, it is assumed to be:

• -1 — If fcn_type is 'd' or 'cd'.

Ts = -1 indicates a discrete-time model with unknown sampling
time.

• 0 — If fcn_type is 'c'.

Ts = 0 indicates a continuous-time model.

Name,Value

1-333

idgrey

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value arguments to specify additional properties
of idgrey models during model creation. For example,
idgrey(odefun,parameters,fcn_type,'InputName','Voltage')
creates an idgrey model with the InputName property set to Voltage.

Properties idgrey object properties include:

a,b,c,d

Values of state-space matrices.

• a — State matrix A, an Nx-by-Nx matrix, as returned by the ODE
function associated with the idgrey model. Nx is the number of
states.

• b— Input-to-state matrix B, an Nx-by-Nu matrix, as returned by the
ODE function associated with the idgrey model. Nu is the number of
inputs and Nx is the number of states.

• c — State-to-output matrix C, an Ny-by-Nx matrix, as returned
by the ODE function associated with the idgrey model. Nx is the
number of states and Ny is the number of outputs.

• d— Feedthrough matrix D, an Ny-by-Nu matrix, as returned by the
ODE function associated with the idgrey model. Ny is the number
of outputs and Nu is the number of inputs.

The values a,b,c,d are returned by the ODE function associated with
the idgrey model. Thus, you can only read these matrices; you cannot
set their values.

k

Value of state disturbance matrix, K

1-334

idgrey

k is Nx-by-Ny matrix, where Nx is the number of states and Ny is the
number of outputs.

• If odefun parameterizes the K matrix, then k has the value returned
by odefun. odefun parameterizes the K matrix if it returns at
least five outputs and the value of the fifth output does not contain
NaN values.

• If odefun does not parameterize the Kmatrix, then k is a zero matrix
of size Nx-by-Ny. Nx is the number of states and Ny is the number of
outputs. The value is treated as a fixed value of the K matrix during
estimation. To make the value estimable, use the DisturbanceModel
estimation option.

• Regardless of whether the K matrix is parameterized by odefun or
not, you can set the value of the k property explicitly as an Nx-by-Ny
matrix. Nx is the number of states and Ny is the number of outputs.
The specified value is treated as a fixed value of the K matrix during
estimation. To make the value estimable, use the DisturbanceModel
estimation option.

To create an estimation option set for idgrey models, use
greyestOptions.

StateName

State names. For first-order models, set StateName to a string. For
models with two or more states, set StateName to a cell array of strings
. Use an empty string '' for unnamed states.

Default: Empty string '' for all states

StateUnit

State units. Use StateUnit to keep track of the units each state is
expressed in. For first-order models, set StateUnit to a string. For
models with two or more states, set StateUnit to a cell array of strings.
StateUnit has no effect on system behavior.

Default: Empty string '' for all states

1-335

idgrey

Structure

Information about the estimable parameters of the idgrey model.

Structure stores information regarding the MATLAB function that
parameterizes the idgrey model.

• Strucutre.Function — Name or function handle of the MATLAB
function used to create the idgrey model.

• Structure.FcnType— Indicates whether the model is parameterized
in continuous-time, discrete-time, or both.

• Structure.Parameters — Information about the estimated
parameters. Structure.Parameters contains the following fields:

- Value — Parameter values. For example,
sys.Structure.Parameters(2).Value contains the initial or
estimated values of the second parameter.

NaN represents unknown parameter values.

- Minimum — Minimum value that the parameter
can assume during estimation. For example,
sys.Structure.Parameters(1).Minimum = 0 constrains
the first parameter to be greater than or equal to zero.

- Maximum — Maximum value that the parameter can assume
during estimation.

- Free — Boolean value specifying whether the parameter is
estimable. If you want to fix the value of a parameter during
estimation, set Free = false for the corresponding entry.

- Scale — Scale of the parameter’s value. Scale is not used in
estimation.

- Info — Structure array for storing parameter units and labels.
The structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

1-336

idgrey

• Structure.ExtraArgs— Optional input arguments required by the
ODE function.

• Structure.StateName— Names of the model states.

• Structure.StateUnit— Units of the model states.

NoiseVariance

The variance (covariance matrix) of the model innovations, e.

An identified model includes a white, Gaussian noise component, e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as greyest or pem) determines this
variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of
outputs in the system.

Report

Information about the estimation process.

Report contains the following fields:

• Status— Whether model was obtained by construction, estimated,
or modified after estimation.

• Method — Name of estimation method used.

• InitialState— Initial state handling during model estimation.

• DisturbanceModel — Disturbance component (the K matrix)
handling of the model during estimation.

• Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

• Parameters — Estimated values of model parameters and their
covariance

• OptionsUsed — Options used during estimation (see
greyestOptions).

1-337

idgrey

• RandState—Random number stream state at the start of estimation.

• DataUsed— Attributes of the data used for estimation, such as name
and sampling time.

• Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value and stopping criterion.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idgrey, OutputDelay is fixed to zero.

Ts

Sampling time.

For continuous-time models, Ts = 0. For discrete-time models, Ts is
a positive scalar representing the sampling period expressed in the
unit specified by the TimeUnit property of the model. To denote a
discrete-time model with unspecified sampling time, set Ts = -1.

Changing this property does not discretize or resample the model.

1-338

idgrey

For idgrey models, there is no unique default value for Ts. Ts depends
on the value of fcn_type.

TimeUnit

String representing the unit of the time variable. For continuous-time
models, this property represents any time delays in the model. For
discrete-time models, it represents the sampling time Ts. Use any of
the following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

1-339

idgrey

sys.InputName = 'controls';

The input names automatically expand to
{'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
For a single-input model, set InputUnit to a string. For a multi-input
model, set InputUnit to a cell array of strings. InputUnit has no effect
on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group
by name. Specify input groups as a structure. In this structure, field
names are the group names, and field values are the input channels
belonging to each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

1-340

idgrey

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. For a single-output model, set OutputUnit to a string. For
a multi-output model, set OutputUnit to a cell array of strings.
OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

1-341

idgrey

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure. In this structure, field
names are the group names, and field values are the output channels
belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

1-342

idgrey

See Also greyest | greyestOptions | pem | idnlgrey | idss | ssest |
getpvec | setpvec

Related
Examples

• “Estimating Coefficients of ODEs to Fit Given Solution”
• “Estimate Model Using Zero/Pole/Gain Parameters”

Concepts • “Specifying the Linear Grey-Box Model Structure”

1-343

idinput

Purpose Generate input signals

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

Description idinput generates input signals of different kinds, which are typically
used for identification purposes. u is returned as a matrix or column
vector.

For further use in the toolbox, we recommend that you create an iddata
object from u, indicating sampling time, input names, periodicity, and
so on:

u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a
column vector with this number of rows.

N = [N nu] gives an input with nu input channels each of length N.

N = [P nu M] gives a periodic input with nu channels, each of length
M*P and periodic with period P.

Default is nu = 1 and M = 1.

type defines the type of input signal to be generated. This argument
takes one of the following values:

• type = 'rgs': Gives a random, Gaussian signal.

• type = 'rbs': Gives a random, binary signal. This is the default.

• type = 'prbs': Gives a pseudorandom, binary signal.

• type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument
band. For the choices type = 'rs', 'rbs', and 'sine', this argument
is a row vector with two entries

band = [wlow, whigh]

1-344

idinput

that determine the lower and upper bound of the passband. The
frequencies wlow and whigh are expressed in fractions of the Nyquist
frequency. A white noise character input is thus obtained for band =
[0 1], which is also the default value.

For the choice type = 'prbs',

band = [0, B]

where B is such that the signal is constant over intervals of length 1/B
(the clock period). In this case the default is band = [0 1].

The argument levels defines the input level. It is a row vector

levels = [minu, maxu]

such that the signal u will always be between the values minu and maxu
for the choices type = 'rbs', 'prbs', and 'sine'. For type = 'rgs',
the signal level is such that minu is the mean value of the signal, minus
one standard deviation, while maxu is the mean value plus one standard
deviation. Gaussian white noise with zero mean and variance one is
thus obtained for levels = [-1, 1], which is also the default value.

Some PRBS Aspects

If more than one period is demanded (that is, M > 1), the length of the
data sequence and the period of the PRBS signal are adjusted so that an
integer number of maximum length PRBS periods is always obtained. If
M = 1, the period of the PRBS signal is chosen to that it is longer than
P = N. In the multiple-input case, the signals are maximally shifted.
This means P/nu is an upper bound for the model orders that can be
estimated with such a signal.

Some Sine Aspects

In the 'sine' case, the sinusoids are chosen from the frequency grid

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P

1-345

idinput

intersected with pi*[band(1) band(2)]. For Grid_Skip, see below.
For multiple-input signals, the different inputs use different frequencies
from this grid. An integer number of full periods is always delivered.
The selected frequencies are obtained as the second output argument,
freqs, where row ku of freqs contains the frequencies of input number
ku. The resulting signal is affected by a fifth input argument, sinedata

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

meaning that No_of_Sinusoids is equally spread over the indicated
band. No_of_Trials (different, random, relative phases) are tried until
the lowest amplitude signal is found.

Default: sinedata = [10,10,1];

Grid_Skip can be useful for controlling odd and even frequency
multiples, for example, to detect nonlinearities of various kinds.

Algorithms Very simple algorithms are used. The frequency contents are achieved
for 'rgs' by an eighth-order Butterworth, noncausal filter, using
idfilt. The same filter is used for the 'rbs' case, before making
the signal binary. This means that the frequency contents are not
guaranteed to be precise in this case.

For the 'sine' case, the frequencies are selected to be equally spread
over the chosen grid, and each sinusoid is given a random phase. A
number of trials are made, and the phases that give the smallest signal
amplitude are selected. The amplitude is then scaled so as to satisfy
the specifications of levels.

References See Söderström and Stoica (1989), Chapter C5.3. For a general
discussion of input signals, see Ljung (1999), Section 13.3.

Examples Create an input consisting of five sinusoids spread over the whole
frequency interval. Compare the spectrum of this signal with that of its
square. The frequency splitting (the square having spectral support at
other frequencies) reveals the nonlinearity involved:

1-346

idinput

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
spectrum(etfe(u),'r*',etfe(u2),'+')

1-347

idmodel

Purpose Superclass for linear models

Note idmodel has been removed. See idgrey, idpoly, idproc, idss
or idtf instead.

1-348

idnlarx

Purpose Nonlinear ARX model

Syntax m = idnlarx([na nb nk])
m = idnlarx([na nb nk],Nonlinearity)
m = idnlarx([na nb nk],Nonlinearity,'Name',Value)
m = idnlarx(LinModel)
m = idnlarx(LinModel,Nonlinearity)
m = idnlarx(LinModel,Nonlinearity,'PropertyName',

PropertyValue)

Description Represents nonlinear ARX model. The nonlinear ARX structure is an
extension of the linear ARX structure and contains linear and nonlinear
functions. For more information, see “Nonlinear ARX Model Extends
the Linear ARX Structure”.

Typically, you use the nlarx command to both construct the idnlarx
object and estimate the model parameters. You can configure the model
properties directly in the nlarx syntax.

You can also use the idnlarx constructor to create the nonlinear ARX
model structure and then estimate the parameters of this model using
nlarx or pem.

For idnlarx object properties, see:

• “idnlarx Model Properties” on page 1-351

• “idnlarx Algorithm Properties” on page 1-356

Construction m = idnlarx([na nb nk]) creates an idnlarx object using a default
wavelet network as its nonlinearity estimator. na, nb, and nk are
positive integers that specify model orders and delays.

m = idnlarx([na nb nk],Nonlinearity) specifies a nonlinearity
estimator Nonlinearity, as a nonlinearity estimator object or string
representing the nonlinearity estimator type.

m = idnlarx([na nb nk],Nonlinearity,'Name',Value) creates the
object using options specified as idnlarx model property or idnlarx

1-349

idnlarx

algorithm property name and value pairs. Specify Name inside single
quotes.

m = idnlarx(LinModel) creates an idnlarx object using a linear
model (in place of [na nb nk]), and a wavelet network as its nonlinearity
estimator. LinModel is a discrete time input-output polynomial model
of ARX structure (idpoly). LinModel sets the model orders, input delay,
input-output channel names and units, sample time, and time unit of
m, and the polynomials initialize the linear function of the nonlinearity
estimator.

m = idnlarx(LinModel,Nonlinearity) specifies a nonlinearity
estimator Nonlinearity.

m =
idnlarx(LinModel,Nonlinearity,'PropertyName',PropertyValue)
creates the object using options specified as idnlarx property
name and value pairs.

Input
Arguments

na nb nk

Positive integers that specify the model orders and delays.

For ny output channels and nu input channels, na is an ny-by-ny matrix
whose i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices, where each
row defines the orders for the corresponding output.

Nonlinearity

Nonlinearity estimator, specified as a nonlinearity estimator object or
string representing the nonlinearity estimator type.

'wavenet' or wavenet object
(default)

Wavelet network

'sigmoidnet' or sigmoidnet object Sigmoid network

'treepartition' or treepartition object Binary-tree

'linear' or [] or linear object Linear function

1-350

idnlarx

neuralnet object Neural network

customnet object Custom network

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting Nonlinearity to an
ny-by-1 cell array or object array of nonlinearity estimators. To specify
the same nonlinearity for all outputs, specify Nonlinearity as a single
nonlinearity estimator.

LinModel

Discrete time input-output polynomial model of ARX structure (idpoly),
typically estimated using the arx command.

idnlarx
Model
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit
get(m,'TimeUnit')
% Get value of Nonlinearity property
m.Nonlinearity

You can specify property name-value pairs in the model estimator or
constructor to configure the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.

The following table summarizes idnlarx model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

1-351

idnlarx

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlarx Algorithm Properties” on page 1-356.

CustomRegressors Custom expression in terms of standard regressors.
Assignable values:

• Cell array of strings. For example:
{'y1(t-3)^3','y2(t-1)*u1(t-3)','sin(u3(t-2))'}.

• Object array of customreg objects. Create these objects
using commands such as customreg and polyreg. For more
information, see the corresponding reference pages.

EstimationInfo A read-only structure that stores estimation settings and
results. The structure has the following fields:

Field Name Description

Status Shows whether the model
parameters were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function,
equal to det(E'*E/N), where
E is the residual error matrix
(one column for each output)
and N is the total number of
samples.

FPE Value of Akaike’s Final
Prediction Error (see fpe).

DataName Name of the data from which
the model is estimated.

DataLength Length of the estimation
data.

1-352

idnlarx

Property Name Description

DataTs Sampling interval of the
estimation data.

DataDomain 'Time' means time domain
data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the
input estimation data used
for interpolation:

• 'zoh' means
zero-order-hold, or
piecewise constant.

• 'foh' means
first-order-hold, or
piecewise linear.

EstimationTime Duration of the estimation.

InitRandState Random number generator
settings at the last
randomization of the model
parameters using init.
init specifies the value of
InitRandState as the output
of executing rng.

Iterations Number of iterations
performed by the estimation
algorithm.

UpdateNorm Norm of the Gauss-Newton
in the last iteration. Empty
when 'lsqnonlin' is the
search method.

LastImprovement Criterion improvement in the
last iteration, shown in %.

1-353

idnlarx

Property Name Description

Empty when 'lsqnonlin' is
the search method.

Warning Any warnings encountered
during parameter estimation.

WhyStop Reason for terminating
parameter estimation
iterations.

Focus Specifies 'Prediction' or 'Simulation'.
Assignable values:

• 'Prediction' (default) — The estimation algorithm

minimizes y y− ˆ , where ŷ is the 1–step ahead predicted
output. This algorithm does not necessarily minimize the
simulation error.

• 'Simulation' — The estimation algorithm minimizes
the simulation error and optimizes the results of

compare(data,model,Inf). That is, when computing ŷ , y in
the regressors in F are replaced by values simulated from the
input only. 'Simulation' requires that the model include
only differentiable nonlinearities.

Note If your model includes the treepartition or neuralnet
nonlinearity, the algorithm always uses 'prediction',
regardless of the Focus value. If your model includes the
wavenet nonlinearity, the first estimation of this model uses
'prediction'.

1-354

idnlarx

Property Name Description

NonlinearRegressors Specifies which standard or custom regressors enter the
nonlinear block. For multiple-output models, use cell array of
ny elements (ny = number of model outputs). For each output,
assignable values are:

• 'all'— All regressors enter the nonlinear block.

• 'search'— Specifies that the estimation algorithm searches
for the best regressor combination. This is useful when you
want to reduce a large number of regressors entering the
nonlinear function block or the nonlinearity estimator.

• 'input' — Input regressors only.

• 'output' — Output regressors only.

• 'standard' — Standard regressors only.

• 'custom' — Custom regressors only.

• '[]'— No regressors enter the nonlinear block.

• A vector of indices: Specifies the indices of the regressors that
should be used in the nonlinear estimator. To determine the
order of regressors, use getreg.

Nonlinearity Nonlinearity estimator object. Assignable values include
wavenet (default), sigmoidnet, treepartition, customnet,
neuralnet, and linear. If the model contains only one
regressor, you can also use saturation, deadzone, pwlinear,
or poly1d.

For ny outputs, Nonlinearity is an ny-by-1 array. For example,
[sigmoidnet;wavenet] for a two-output model. When you
specify a scalar object, this nonlinearity applies to all outputs.

na
nb
nk

Nonlinear ARX model orders and input delays, where na is the
number of output terms, nb is the number of input terms, and
nk is the delay from input to output in terms of the number
of samples.

1-355

idnlarx

Property Name Description

For ny outputs and nu inputs, na is an ny-by-ny matrix whose
i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices.

idnlarx
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlarx
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm options.
The structure has the following fields:

Field Name Description

GnPinvConst When the search direction is computed,
the algorithm discards the singular values
of the Jacobian that are smaller than
GnPinvConst*max(size(J))*norm(J)*eps.
Singular values that are closer to 0 are
included when GnPinvConst is decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search
algorithm) The starting level
of regularization when using the
Levenberg-Marquardt search method
(Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search
algorithm) Try this next level of
regularization to get a lower value
of the criterion function. The level

1-356

idnlarx

Property Name Description

of regularization is LMStep times the
previous level. At the start of a new
iteration, the level of regularization is
computed as 1/LMStep times the value
from the previous iteration.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed
by the line search algorithm along the
search direction (number of rotations of
search vector for 'lm'). Used by 'gn',
'lm', 'gna' and 'grad' search methods
(Algorithm.SearchMethod property)
Default: 10.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number
of calls to the model file exceeds this
value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed
per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative
improvement of the criterion function is
less than RelImprovement.
Default: 0.
Assign a positive real value.

1-357

idnlarx

Property Name Description

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested
parameter update is reduced by the
factor 'StepReduction' after each try
until either 'MaxBisections' tries are
completed or a lower value of the criterion
function is obtained.
Default: 2.
Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

Criterion The search method of lsqnonlin supports the Trace criterion only.

Use for multiple-output models only. Criterion can have the
following values:

• 'Det': Minimize det(E'*E), where E represents the prediction
error. This is the optimal choice in a statistical sense and leads to
the maximum likelihood estimates in case nothing is known about
the variance of the noise. It uses the inverse of the estimated noise
variance as the weighting function. This is the default criterion
used for all models, except idnlgrey which uses 'Trace' by
default.

• 'Trace': Minimize the trace of the weighted prediction error
matrix trace(E'*E*W), where E is the matrix of prediction errors,
with one column for each output, and W is a positive semi-definite
symmetric matrix of size equal to the number of outputs. By
default, W is an identity matrix of size equal to the number of model

1-358

idnlarx

Property Name Description

outputs (so the minimization criterion becomes trace(E'*E), or
the traditional least-squares criterion). You can specify the relative
weighting of prediction errors for each output using the Weighting
field of the Algorithm property. If the model contains neuralnet
or treepartition as one of its nonlinearity estimators, weighting
is not applied because estimations are independent for each output.

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares of
prediction errors. Det can be interpreted as estimating the covariance
matrix of the noise source and using the inverse of that matrix as the
weighting. You should specify the weighting when using the Trace
criterion.

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors
that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix is
ill-conditioned, try using the Trace criterion. You can also use
compare on validation data to check whether the relative error for
different channels corresponds to your needs or expectations. Use the
Trace criterion if you need to modify the relative errors, and check
model.NoiseVariance to determine what weighting modifications
to specify.

IterWavenet (For wavenet nonlinear estimator only)
Toggles performing iterative or noniterative estimation.
Default: 'auto'.
Assignable values:

• 'auto' — First estimation is noniterative and subsequent
estimation are iterative.

• 'On' — Perform iterative estimation only.

• 'Off' — Perform noniterative estimation only.

1-359

idnlarx

Property Name Description

LimitError Robustification criterion that limits the influence of large residuals,
specified as a positive real value. Residual values that are larger
than 'LimitError' times the estimated residual standard deviation
have a linear cost instead of the usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

MaxSize The number of elements (size) of the largest matrix to be formed by
the algorithm. Computational loops are used for larger matrices. Use
this value for memory/speed trade-off.MaxSize can be any positive
integer.
Default: 250000.

Note The original data matrix of u and y must be smaller than
MaxSize.

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto'— Automatically chooses from the following methods.

• 'gn' — Subspace Gauss-Newton method.

• 'gna' — Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin' — Nonlinear least-squares method (requires the
Optimization Toolbox product). This method only handles the
'Trace' criterion.

1-360

idnlarx

Property Name Description

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

Display Toggles displaying or hiding estimation progress information in
theMATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting (For multiple-output models only)

Specifies the relative importance of outputs in MIMO models (or
reliability of corresponding data) as a positive semi-definite matrix W.
Use when Criterion = 'Trace' for weighted trace minimization. By
default, Weighting is an identity matrix of size equal to the number
of outputs.

Definitions Nonlinear ARX Model Structure

This block diagram represents the structure of a nonlinear ARX model
in a simulation scenario:

����������
��������	

������

�

�

�������������������� �����	

������

��������	���������	

1-361

idnlarx

The nonlinear ARX model computes the output y in two stages:

1 Computes regressors from the current and past input values and
past output data.

In the simplest case, regressors are delayed inputs and outputs, such
as u(t-1) and y(t-3)—called standard regressors. You can also specify
custom regressors, which are nonlinear functions of delayed inputs
and outputs. For example, tan(u(t-1)) or u(t-1)*y(t-3).

By default, all regressors are inputs to both the linear and the
nonlinear function blocks of the nonlinearity estimator. You can
choose a subset of regressors as inputs to the nonlinear function block.

2 The nonlinearity estimator block maps the regressors to the model
output using a combination of nonlinear and linear functions.
You can select from available nonlinearity estimators, such as
tree-partition networks, wavelet networks, and multi-layer neural
networks. You can also exclude either the linear or the nonlinear
function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear
blocks in parallel. For example:

F x L x r d g Q x rT() () ()= − + + −()

x is a vector of the regressors. L x dT () + is the output of the linear

function block and is affine when d≠0. d is a scalar offset. g Q x r()−()
represents the output of the nonlinear function block. r is the mean of
the regressors x. Q is a projection matrix that makes the calculations
well conditioned. The exact form of F(x) depends on your choice of the
nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter
values, such as L, r, d, Q, and other parameters specifying g. Resulting
models are idnlarx objects that store all model data, including model

1-362

idnlarx

regressors and parameters of the nonlinearity estimator. See the
idnlarx reference page for more information.

Definition of idnlarx States

The states of an idnlarx object are delayed input and output variables
that define the structure of the model. This toolbox requires states for
simulation and prediction using sim(idnlarx), predict, and compare.
States are also necessary for linearization of nonlinear ARX models
using linearize(idnlarx).

This toolbox provides a number of options to facilitate how you
specify the initial states. For example, you can use findstates and
data2state to automatically search for state values in simulation and
prediction applications. For linearization, use findop. You can also
specify the states manually.

The states of an idnlarx model are defined by the maximum delay in
each input and output variable used by the regressors. If a variable p
has a maximum delay of D samples, then it contributes D elements to
the state vector at time t: p(t-1), p(t-2), ..., p(t-D).

For example, if you have a single-input, single-output idnlarx model:

m = idnlarx([2 3 0],'wavenet', ...
'CustomRegressors', ...
{'y1(t-10)*u1(t-1)'});

This model has these regressors:

getreg(m)

Regressors:
y1(t-1)
y1(t-2)
u1(t)
u1(t-1)
u1(t-2)
y1(t-10)*u1(t-1)

1-363

idnlarx

The regressors show that the maximum delay in the output variable
y1 is 10 samples and the maximum delay in the input u1 is 2 samples.
Thus, this model has a total of 12 states:

X(t) = [y1(t-1),y2(t-2), ,y1(t-10),u1(t-1),u1(t-2)]

Note The state vector includes the output variables first, followed
by input variables.

As another example, consider the 2-output and 3-input model:

m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0], ...
[wavenet; linear])

getreg lists these regressors:

getreg(m)

Regressors:
For output 1:

y1(t-1)
y1(t-2)
u1(t-1)
u1(t-2)
u2(t)
u2(t-1)
u3(t)

For output 2:
y1(t-1)
u1(t-1)
u2(t-1)
u2(t-2)
u2(t-3)
u2(t-4)

1-364

idnlarx

u2(t-5)

The maximum delay in output variable y1 is 2 samples, which occurs
in regressor set for output 1. The maximum delays in the three input
variables are 2, 5, and 0, respectively. Thus, the state vector is:

X(t) = [y1(t-1), y1(t-2), u1(t-1), u1(t-2), u2(t-1),
u2(t-2), u2(t-3), u2(t-4), u2(t-5)]

Variables y2 and u3 do not contribute to the state vector because the
maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use
getDelayInfo, which returns the maximum delays in all I/O variables
across all model outputs. For the multiple-input multiple-output model
m, getDelayInfo returns:

maxDel = getDelayInfo(m)
maxDel =

2 0 2 5 0

maxDel contains the maximum delays for all input and output variables
in the order (y1, y2, u1, u2, u3). The total number of model states is
sum(maxDel) = 9.

The set of states for an idnlarx model are not required to be minimal.

Examples Create nonlinear ARX model structure with (default) wavelet network
nonlinearity:

m = idnlarx([2 2 1]) % na=nb=2 and nk=1

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

1-365

idnlarx

Create nonlinear ARX model structure with no nonlinear function in
nonlinearity estimator:

m=idnlarx([2 2 1],[])

Construct a nonlinear ARX model using a linear ARX model:

% Construct a linear ARX model.
A = [1 -1.2 0.5];
B = [0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);

% Construct nonlinear ARX model using the linear ARX model.
m1 = idnlarx(LinearModel)

See Also addreg | customnet | customreg | findop(idnlarx) | getreg |
idnlmodel | linear | linearize(idnlarx) | nlarx | pem | polyreg
| sigmoidnet | wavenet

Tutorials • “Example – Using nlarx to Estimate Nonlinear ARX Models”

• “Estimate Nonlinear ARX Models Using Linear ARX Models”

How To • “Identifying Nonlinear ARX Models”

• “Using Linear Model for Nonlinear ARX Estimation”

1-366

idnlgrey

Purpose Nonlinear ODE (grey-box model) with unknown parameters

Syntax m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m = idnlgrey('filename',Order,Parameters,InitialStates,
Ts,P1,V1,...,PN,VN)

Description idnlgrey is an object that represents the nonlinear grey-box model.

For information about the nonlinear grey-box models, see “Estimating
Nonlinear Grey-Box Models”.

The information in these reference pages summarizes the idnlgrey
model constructor and properties. It discusses the following topics:

• “idnlgrey Constructor” on page 1-367

• “idnlgrey Properties” on page 1-368

• “idnlgrey Algorithm Properties” on page 1-372

• “idnlgrey Advanced Algorithm Properties” on page 1-375

• “idnlgrey Simulation Options” on page 1-377

• “idnlgrey Gradient Options” on page 1-380

• “idnlgrey EstimationInfo Properties” on page 1-381

idnlgrey
Constructor

After you create the function or MEX-file with your model structure,
you must define an idnlgrey object.

Use the following syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters)

m = idnlgrey('filename',Order,Parameters,InitialStates)

m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)

m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1,...,PN,VN)

1-367

idnlgrey

The idnlgrey arguments are defined as follows:

• 'filename'— Name of the function or MEX-file storing the model
structure (ODE file).

• Order — Vector with three entries [Ny Nu Nx], specifying the
number of model outputs Ny, the number of inputs Nu, and the
number of states Nx.

• Parameters— Parameters, specified as struct arrays, cell arrays,
or double arrays.

• InitialStates— Specified in a same way as parameters. Must be
fourth input to the idnlgrey constructor.

• The command

m = idnlgrey('filename',Order,Parameters,...
InitialStates,Ts,P1,V1,...,PN,VN)

specifies idnlgrey property-value pairs. See information on
properties of idnlgrey objects below.

Estimate the unknown parameters and initial states of this object using
pem. The input-output dimensions of the data must be compatible with
the input and output orders you specified for the idnlgrey model. You
can pass additional property-value pairs to pem to specify the properties
of the model or estimation algorithm, such as MaxIter and Tolerance.

idnlgrey
Properties

After creating the object, you can use get or dot notation to access the
object property values.

You can include property-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm
properties.

Use set or dot notation to set a property of an existing object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model time unit

1-368

idnlgrey

get(m,'TimeUnit')
m.TimeUnit

The following table summarizes idnlgrey model properties. The
general idnlmodel properties also apply to this nonlinear model object
(see the corresponding reference pages).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlgrey Algorithm Properties” on page 1-372.

CovarianceMatrix Covariance matrix of the estimated Parameters.
Assignable values:

• 'None' to omit computing uncertainties and save time
during parameter estimation.

• 'Estimate' to estimation covariance. Symmetric and
positive Np-by-Np matrix (or []) where Np is the number of
free model parameters.

EstimationInfo A read-only structure that stores estimation settings and
results, as described in “idnlgrey EstimationInfo Properties”
on page 1-381.

FileArgument Contains auxiliary variables passed to the ODE file (function
or MEX-file) specified in FileName. These variables may be
used as extra inputs for specifying the state and/or output
equations. FileArgument should be specified as a cell array.
Default: {}.

FileName File name string (without extension) or a function handle
for computing the states and the outputs. If 'FileName' is
a string, then it must point to a MATLAB file, P-code file or
MEX-file. For more information about the file variables, see
“Specifying the Nonlinear Grey-Box Model Structure”.

1-369

idnlgrey

Property Name Description

InitialStates An Nx-by-1 structure array with fields as follows. Here, Nx is
the number of states of the model.

• Name: Name of the state (a string). Default value is 'x#i',
where #i is an integer in [1, Nx].

• Unit: Unit of the state (a string). Default value is ''.

• Value: Initial value of the initial state(s). Assignable values
are:

- A finite real scalar

- A finite real 1-by-Ne vector, where Ne is the number of
experiments in the data set to be used for estimation

• Minimum: Minimum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

• Maximum: Maximum value of the initial state(s). Must be
a real scalar/1-by-Ne vector of the same size as Value and
such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

• Fixed: Specifies which component(s) of the initial state(s)
are fixed to their known values. Must be a Boolean
scalar/1-by-Ne vector of the same size as Value. Default
value: true(size(Value)) (that is, do not estimate the
initial states).

For an idnlgrey model M, the ith initial state is accessed
through M.InitialStates(i) and its subfields as
M.InitialStates(i).FIELDNAME.

1-370

idnlgrey

Property Name Description

Order Structure with following fields:

• ny— Number of outputs of the model structure.

• nu — Number of inputs of the model structure.

• nx — Number of states of the model structure.

For time series, nu is 0. For static model structures, nx is 0.

Parameters Np-by-1 structure array with information about the model
parameters containing the following fields:

• Name: Name of the parameter (a string). Default value is
'p#i', where #i is an integer in [1, Np].

• Unit: Unit of the parameter (a string). Default value is ''.

• Value: Initial value of the parameter(s). Assignable values
are:

- A finite real scalar

- A finite real column vector

- A 2-dimensional real matrix

• Minimum: Minimum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Minimum <= Value for all components. Default
value: -Inf(size(Value)).

• Maximum: Maximum value of the parameter(s). Must be a
real scalar/column vector/matrix of the same size as Value
and such that Value <= Maximum for all components. Default
value: Inf(size(Value)).

• Fixed: Specifies which component(s) of the parameter(s)
are fixed to their known values. Must be a Boolean
scalar/column vector/matrix of the same size as Value.

1-371

idnlgrey

Property Name Description

Default value: false(size(Value)), (estimate all
parameter components).

For an idnlgrey model M, the ith parameter is
accessed through M.Parameters(i) and its subfields as
M.Parameters(i).FIELDNAME.

idnlgrey
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlgrey
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm
options, as described in “idnlgrey Advanced Algorithm
Properties” on page 1-375.

Criterion Specifies criterion used during minimization. Criterion can
have the following values:

• 'Det': Minimize det(E'*E) where E represents the
prediction error. This is the optimal choice in a statistical
sense and leads to the maximum likelihood estimates in
case nothing is known about the variance of the noise. It
uses the inverse of the estimated noise variance as the
weighting function. This is the default criterion used for all
models, except idnlgrey which uses 'Trace' by default.

• 'Trace': Minimize the trace of the weighted prediction
error matrix trace(E'*E*W), where E is the matrix of
prediction errors, with one column for each output, and W
is a positive semi-definite symmetric matrix of size equal
to the number of outputs. By default, W is an identity
matrix of size equal to the number of model outputs (so
the minimization criterion becomes trace(E'*E), or the
traditional least-sum-of-squared-errors criterion. You can

1-372

idnlgrey

Property Name Description

specify the relative weighting of prediction errors for each
output using the Weighting field of the Algorithm property.

LimitError Robustification criterion that limits the influence of large
residuals, specified as a positive real value. Residual values
that are larger than 'LimitError' times the estimated
residual standard deviation have a linear cost instead of the
usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'gn' — Gauss-Newton method.

• 'gna'— Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin'— Nonlinear least-squares method (requires
the Optimization Toolbox product). This method handles
only the 'Trace' criterion.

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

GradientOptions A structure that specifies the options related to calculation of
gradient of the cost, “idnlgrey Gradient Options” on page 1-380.

1-373

idnlgrey

Property Name Description

SimulationOptions A structure that specifies the simulation method and related
options, as described in “idnlgrey Simulation Options” on page
1-377.

Display Toggles displaying or hiding estimation progress information
in the MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting Positive semi-definite matrix W used for weighted trace
minimization. When Criterion = 'Trace', trace(E'*E*W)
is minimized. Weighting can be used to specify relative
importance of outputs in multiple-input multiple-output
models (or reliability of corresponding data) when W is a
diagonal matrix of nonnegative values. Weighting is not
useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.

1-374

idnlgrey

Note The Criterion property setting is meaningful in multiple-output
cases only. In single-output models, the two criteria are equivalent.
Both the Det and Trace criteria are derived from a general requirement
of minimizing a weighted sum of least squares of prediction errors. The
Det criterion can be interpreted as estimating the covariance matrix of
the noise source and using the inverse of that matrix as the weighting.
You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in
multiple-input multiple-output models, you should use Trace with
weighting that favors that channel. Otherwise it is natural to use Det.
When using Det you can check cond(model.NoiseVariance) after
estimation. If the matrix is ill-conditioned, it may be more robust to
use the Trace criterion. You can also use compare on validation data
to check whether the relative error for different channels corresponds
to your needs or expectations. Use the Trace criterion if you need
to modify the relative errors, and check model.NoiseVariance to
determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.

idnlgrey
Advanced
Algorithm
Properties

The following table summarizes the fields of the Algorithm.Advanced
model properties. The fields in the Algorithm.Advanced structure
specify additional estimation-algorithm options.

1-375

idnlgrey

Property Name Description

GnPinvConst When the search direction is computed, the algorithm
discards the singular values of the Jacobian that are smaller
than GnPinvConst*max(size(J))*norm(J)*eps. Singular
values that are closer to 0 are included when GnPinvConst is
decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search algorithm) The starting
level of regularization when using the Levenberg-Marquardt
search method (Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search algorithm) Try this next
level of regularization to get a lower value of the criterion
function. The level of regularization is LMStep times the
previous level. At the start of a new iteration, the level of
regularization is computed as 1/LMStep times the value from
the previous iteration.
Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections performed by the line search
algorithm along the search direction (number of rotations of
search vector for 'lm'). Used by 'gn', 'lm', 'gna' and 'grad'
search methods (Algorithm.SearchMethod property)
Default: 25.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number of calls to the model
file exceeds this value.
Default: Inf.
Assign a positive integer value.

1-376

idnlgrey

Property Name Description

MinParChange The smallest parameter update allowed per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative improvement of the
criterion function is less than RelImprovement.
Default: 0.
Assign a positive real value.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

StepReduction (For line search algorithm) The suggested parameter update
is reduced by the factor 'StepReduction' after each try until
either 'MaxBisections' tries are completed or a lower value
of the criterion function is obtained.
Default: 2.
Assign a positive, real value >1.

Note Does not apply to
Algorithm.SearchMethod='lsqnonlin'

idnlgrey
Simulation
Options

The following table summarizes the fields of
Algorithm.SimulationOptions model properties.

1-377

idnlgrey

Property Name Description

AbsTol Absolute error tolerance. This scalar applies to all components
of the state vector. AbsTol applies only to the variable step
solvers.
Default: 1e-6.
Assignable value: A positive real value.

FixedStep (For fixed-step time-continuous solvers) Step size used by the
solver.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the initial step.

• A real value such that 0<FixedStep<=1.

InitialStep (For variable-step time-continuous solvers) Specifies the initial
step at which the ODE solver starts.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the initial step.

• A positive real value such that
MinStep<=InitialStep<=MaxStep.

MaxOrder (For ode15s) Specifies the order of the Numerical
Differentiation Formulas (NDF).
Default: 5.
Assignable values: 1, 2, 3, 4 or 5.

MaxStep (For variable-step time-continuous solvers) Specifies the
largest time step of the ODE solver.
Default: 'Auto'— 1/15 of the simulation interval.
Assignable values:

• 'Auto'— Automatically chooses the time step.

• A positive real value > MinStep.

1-378

idnlgrey

Property Name Description

MinStep (For variable-step time-continuous solvers) Specifies the
smallest time step of the ODE solver.
Default: 'Auto'.
Assignable values:

• 'Auto'— Automatically chooses the time step.

• A positive real value < MaxStep.

RelTol (For variable-step time-continuous solvers) Relative error
tolerance that applies to all components of the state vector.
The estimated error in each integration step satisfies |e(i)|
<= max(RelTol*abs(x(i)), AbsTol(i)).
Default: 1e-3 (0.1% accuracy).
Assignable value: A positive real value.

Solver ODE (Ordinary Differential/Difference Equation) solver for
solving state space equations.
A. Variable-step solvers for time-continuous idnlgrey models:

• 'ode45'— Runge-Kutta (4,5) solver for nonstiff problems.

• 'ode23'— Runge-Kutta (2,3) solver for nonstiff problems.

• 'ode113' — Adams-Bashforth-Moulton solver for nonstiff
problems.

• 'ode15s'— Numerical Differential Formula solver for stiff
problems.

• 'ode23s'—Modified Rosenbrock solver for stiff problems.

• 'ode23t' — Trapezoidal solver for moderately stiff
problems.

• 'ode23tb'— Implicit Runge-Kutta solver for stiff problems.

B. Fixed-step solvers for time-continuous idnlgrey models:

• 'ode5' — Dormand-Prince solver.

1-379

idnlgrey

Property Name Description

• 'ode4'— Fourth-order Runge-Kutta solver.

• 'ode3' — Bogacki-Shampine solver.

• 'ode2'— Heun or improved Euler solver.

• 'ode1' — Euler solver.

C. Fixed-step solvers for time-discrete idnlgrey models:
'FixedStepDiscrete'

D. General: 'Auto' — Automatically chooses one of the
previous solvers (default).

idnlgrey
Gradient
Options

The following table summarizes the fields of the
Algorithm.GradientOptions model properties. Algorithm is
a structure that specifies the estimation-algorithm options.

Property Name Description

DiffMaxChange Largest allowed parameter perturbation when computing
numerical derivatives.
Default: Inf.
Assignable value: A positive real value >'DiffMinChange'.

DiffMinChange Smallest allowed parameter perturbation when computing
numerical derivatives.
Default: 0.01*sqrt(eps).
Assignable value: A positive real value <'DiffMaxChange'.

1-380

idnlgrey

Property Name Description

DiffScheme Method for computing numerical derivatives with respect to
the components of the parameters and/or the initial state(s) to
form the Jacobian.
Default: 'Auto'
Assignable values:

• 'Auto' - Automatically chooses from the following methods.

• 'Central approximation'

• 'Forward approximation'

• 'Backward approximation'

GradientType Method used when computing derivatives (Jacobian) of the
parameters or the initial states to be estimated.
Default: 'Auto'.
Assignable values:

• 'Auto' — Automatically chooses from the following
methods.

• 'Basic'— Individually computes all numerical derivatives
required to form each column of the Jacobian.

• 'Refined' — Simultaneously computes all numerical
derivatives required to form each column of the Jacobian.

idnlgrey
EstimationInfo
Properties

The following table summarizes the fields of the EstimationInfo model
properties. The read-only fields of the EstimationInfo structure store
estimation settings and results.

1-381

idnlgrey

Property Name Description

Status Shows whether the model parameters were estimated.

Method Names of the solver and the optimizer used during estimation.

LossFcn Value of the loss function, equal to det(E'*E/N), where E is
the residual error matrix (one column for each output) and
N is the total number of samples. Provides a quantitative
description of the model quality.

FPE Value of Akaike’s Final Prediction Error (see fpe).

DataName Name of the data from which the model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation data.

DataDomain 'Time' means time domain data. 'Frequency' is not
supported.

DataInterSample Intersample behavior of the input estimation data used for
interpolation:

• 'zoh' means zero-order-hold, or piecewise constant.

• 'foh' means first-order-hold, or piecewise linear.

EstimationTime Duration of the estimation.

InitialGuess Structure with the fields InitialStates and Parameters,
specifying the values of these quantities before the last
estimation.

Iterations Number of iterations performed by the estimation algorithm.

LastImprovement Criterion improvement in the last iteration, shown in %.
Empty when SearchMethod='lsqnonlin' is the search
method.

1-382

idnlgrey

Property Name Description

UpdateNorm Norm of the search vector (Gauss-Newton vector) at the last
iteration. Empty when 'lsqnonlin' is the search method.

Warning Any warnings encountered during parameter estimation.

WhyStop Reason for terminating parameter estimation iterations.

Definition
of
idnlgrey
States

The states of an idnlgrey model are defined explicitly by the user in
the function or MEX-file (as specified in the FileName property of the
model) storing the model structure . The concept of states is useful for
functions such as sim, predict, compare, and findstates.

Note The initial values of the states are configured by the
InitialStates property of the idnlgrey model.

See Also pem | get | set | getinit | setinit | getpar | idnlmodel | setpar

1-383

idnlhw

Purpose Hammerstein-Wiener model

Syntax m = idnlhw([nb nf nk])
m = idnlhw([nb nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'Name',Value)
m = idnlhw(LinModel)
m = idnlhw(LinModel,InputNL,OutputNL)
m = idnlhw(LinModel,InputNL,OutputNL,'PropertyName',

PropertyValue)

Description Represents Hammerstein-Wiener models. The Hammerstein-Wiener
structure represents a linear model with input-output nonlinearities.

Typically, you use the nlhw command to both construct the idnlhw
object and estimate the model parameters. You can configure the
model properties directly in the nlhw syntax. For information
about the Hammerstein-Wiener model structure, see “Structure of
Hammerstein-Wiener Models”.

You can also use the idnlhw constructor to create the
Hammerstein-Wiener model structure and then estimate the
parameters of this model using pem.

For idnlhw object properties, see:

• “idnlhw Model Properties” on page 1-387

• “idnlhw Algorithm Properties” on page 1-390

Construction m = idnlhw([nb nf nk]) creates an idnlhw object using default
piecewise linear functions for the input and output nonlinearity
estimators. nb, nf, and nk are positive integers that specify model
orders and delays. nb is the number of zeros plus 1, nf is the number of
poles, and nk is the input delay.

m = idnlhw([nb nf nk],InputNL,OutputNL) specifies input
nonlinearity InputNL and output nonlinearity OutputNL, as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

1-384

idnlhw

m = idnlhw([nb nf nk],InputNL,OutputNL,'Name',Value) creates
the object using options specified as idnlhw model property or idnlhw
algorithm property name and value pairs. Specify Name inside single
quotes.

m = idnlhw(LinModel) uses a linear model (in place of [nb nf nk]) and
default piecewise linear functions for the input and output nonlinearity
estimators. LinModel is a discrete time input-output polynomial model
of Output-Error (OE) structure (idpoly), state-space model with
no disturbance component (idss with K = 0), or transfer function
model (idtf). LinModel sets the model orders, input delay, B and F
polynomial values, input-output names and units, sampling time, and
time units of m.

m = idnlhw(LinModel,InputNL,OutputNL) specifies input
nonlinearity InputNL and output nonlinearity OutputNL.

m =
idnlhw(LinModel,InputNL,OutputNL,'PropertyName',PropertyValue)
creates the object using options specified as idnlhw property
name and value pairs.

Input
Arguments

nb, nf, nk

Model orders and input delay, where nb is the number of zeros plus 1,
nf is the number of poles, and nk is the input delay.

For nu inputs and ny outputs, nb, nf, and, nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer function
from the jth input to the ith output.

InputNL, OutputNL

Input and output nonlinearity estimators, respectively, specified as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

1-385

idnlhw

'pwlinear' or pwlinear object (default) Piecewise linear
function

'sigmoidnet' or sigmoidnet object Sigmoid network

'wavenet' or wavenet object Wavelet network

'saturation' or saturation object Saturation

'deadzone' or deadzone object Dead zone

'poly1d' or poly1d object One-dimensional
polynomial

'unitgain' or unitgain object Unit gain

customnet object Custom network

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting InputNL or OutputNL
to an ny-by-1 cell array or object array of nonlinearity estimators. To
specify the same nonlinearity for all outputs, specify a single input
and output nonlinearity estimator.

LinModel

Discrete time linear model, specified as one of the following:

• Input-output polynomial model of Output-Error (OE) structure
(idpoly)

• State-space model with no disturbance component (idss with K = 0)

• Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid or tfest.

1-386

idnlhw

idnlhw
Model
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% Get the model B parameters
get(m,'b')
% Get value of InputNonlinearity property
m.InputNonlinearity

You can specify property name-value pairs in the model estimator or
constructor to specify the model structure and estimation algorithm.

Use set or dot notation to set a property of an existing object.

The following table summarizes idnlhw model properties. The general
idnlmodel properties also apply to this nonlinear model object (see
the corresponding reference page).

Property Name Description

Algorithm A structure that specifies the estimation algorithm options, as
described in “idnlhw Algorithm Properties” on page 1-390.

b B polynomial as a cell array of Ny-by-Nu elements, where Ny
is the number of outputs and Nu is the number of inputs. An
element b{i,j} is a row vector representing the numerator
polynomial for the jth input to ith output transfer function. It
contains as many leading zeros as there are input delays.

f F polynomial as a cell array of Ny-by-Nu elements, where Ny is
the number of outputs and Nu is the number of inputs. An
element f{i,j} is a row vector representing the denominator
polynomial for the j:th input to ith output transfer function.

LinearModel (Read only) The linear model in the linear block. For single
output, represented as an idpoly object. For multiple output,
represented as an idss object.

1-387

idnlhw

Property Name Description

EstimationInfo A read-only structure that stores estimation settings and
results. The structure has the following fields:

Field Name Description

Status Shows whether the model parameters
were estimated.

Method Shows the estimation method.

LossFcn Value of the loss function, equal to
det(E'*E/N), where E is the residual
error matrix (one column for each
output) and N is the total number of
samples.

FPE Value of Akaike’s Final Prediction
Error (see fpe).

DataName Name of the data from which the
model is estimated.

DataLength Length of the estimation data.

DataTs Sampling interval of the estimation
data.

DataDomain 'Time' means time domain data.
'Frequency' is not supported.

DataInterSample Intersample behavior of the input
estimation data used for interpolation:

• 'zoh' means zero-order-hold, or
piecewise constant.

• 'foh' means first-order-hold, or
piecewise linear.

WhyStop Reason for terminating parameter
estimation iterations.

1-388

idnlhw

Property Name Description

UpdateNorm Norm of the search vector (gn-vector)
in the last iteration. Empty when
'lsqnonlin' is the search method.

LastImprovement Criterion improvement in the last
iteration, shown in %. Empty when
'lsqnonlin' is the search method.

Iterations Number of iterations performed by
the estimation algorithm.

Warning Any warnings encountered during
parameter estimation.

InitRandState The value of random number type and
seed at the last randomization of the
initial parameter vector.

EstimationTime Duration of the estimation.

InputNonlinearity Nonlinearity estimator object. Assignable values include
pwlinear (default), deadzone, wavenet, saturation,
customnet, sigmoidnet, poly1d, and unitgain. For more
information, see the corresponding reference pages.

For ny outputs, Nonlinearity is an ny-by-1 array, such as
[sigmoidnet;wavenet]. However, if you specify a scalar
object, this nonlinearity object applies to all outputs.

OutputNonlinearity Same as InputNonlinearity.

nb
nf
nk

Model orders and input delays, where nb is the number of
zeros plus 1, nf is the number of poles, and nk is the delay
from input to output in terms of the number of samples.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu
matrices whose i-jth entry specifies the orders and delay of the
transfer function from the jth input to the ith output.

1-389

idnlhw

idnlhw
Algorithm
Properties

The following table summarizes the fields of the Algorithm idnlhw
model properties. Algorithm is a structure that specifies the
estimation-algorithm options.

Property Name Description

Advanced A structure that specifies additional estimation algorithm options.
The structure has the following fields:

Field Name Description

GnPinvConst When the search direction is
computed, the algorithm discards
the singular values of the
Jacobian that are smaller than
GnPinvConst*max(size(J))*norm(J)*eps.
Singular values that are closer to 0 are
included when GnPinvConst is decreased.
Default: 1e4.
Assign a positive, real value.

LMStartValue (For Levenberg-Marquardt search
algorithm) The starting level
of regularization when using the
Levenberg-Marquardt search method
(Algorithm.SearchMethod='lm').
Default: 0.001.
Assign a positive real value.

LMStep (For Levenberg-Marquardt search
algorithm) Try this next level of
regularization to get a lower value
of the criterion function. The level
of regularization is LMStep times the
previous level. At the start of a new
iteration, the level of regularization is
computed as 1/LMStep times the value
from the previous iteration.

1-390

idnlhw

Property Name Description

Default: 10.
Assign a real value >1.

MaxBisections Maximum number of bisections
performed by the line search algorithm
along the search direction (number of
rotations of search vector for 'lm'). Used
by 'gn', 'lm', 'gna' and 'grad' search
methods (Algorithm.SearchMethod
property).
Default: 10.
Assign a positive integer value.

MaxFunEvals The iterations are stopped if the number
of calls to the model file exceeds this
value.
Default: Inf.
Assign a positive integer value.

MinParChange The smallest parameter update allowed
per iteration.
Default: 1e-16.
Assign a positive, real value.

RelImprovement The iterations are stopped if the relative
improvement of the criterion function is
less than RelImprovement.
Default: 0.
Assign a positive real value.

Note This does not apply when
Algorithm.SearchMethod='lsqnonlin'.

StepReduction (For line search algorithm) The suggested
parameter update is reduced by the
factor 'StepReduction' after each try

1-391

idnlhw

Property Name Description

until either 'MaxBisections' tries are
completed or a lower value of the criterion
function is obtained.
Default: 2.
Assign a positive, real value >1.

Note This does not apply when
Algorithm.SearchMethod='lsqnonlin'.

Criterion The search method of lsqnonlin supports the Trace criterion only.

Use for multiple-output models only. Criterion can have the
following values:

• 'Det': Minimize det(E'*E), where E represents the prediction
error. This is the optimal choice in a statistical sense and leads to
the maximum likelihood estimates in case nothing is known about
the variance of the noise. It uses the inverse of the estimated
noise variance as the weighting function. This is the default
criterion used for all models, except idnlgrey which uses 'Trace'
by default.

• 'Trace': Minimize the trace of the weighted prediction error
matrix trace(E'*E*W), where E is the matrix of prediction errors,
with one column for each output, and W is a positive semi-definite
symmetric matrix of size equal to the number of outputs. By
default, W is an identity matrix of size equal to the number of model
outputs (so the minimization criterion becomes trace(E'*E),
or the traditional least-squares criterion). You can specify the
relative weighting of prediction errors for each output using the
Weighting field of the Algorithm property. If the model contains
neuralnet or treepartition as one of its nonlinearity estimators,
weighting is not applied because estimations are independent for
each output.

1-392

idnlhw

Property Name Description

Both the Det and Trace criteria are derived from a general
requirement of minimizing a weighted sum of least squares
of prediction errors. Det can be interpreted as estimating the
covariance matrix of the noise source and using the inverse of that
matrix as the weighting. You should specify the weighting when
using the Trace criterion.

If you want to achieve better accuracy for a particular channel
in MIMO models, use Trace with weighting that favors
that channel. Otherwise, use Det. If you use Det, check
cond(model.NoiseVariance) after estimation. If the matrix is
ill-conditioned, try using the Trace criterion. You can also use
compare on validation data to check whether the relative error for
different channels corresponds to your needs or expectations. Use the
Trace criterion if you need to modify the relative errors, and check
model.NoiseVariance to determine what weighting modifications
to specify.

IterWavenet (For wavenet nonlinear estimator only)
Implicitly set to perform iterative estimation. Changing this setting
does not impact the algorithm.
Default: 'On'.

LimitError Robustification criterion that limits the influence of large residuals,
specified as a positive real value. Residual values that are larger
than 'LimitError' times the estimated residual standard deviation
have a linear cost instead of the usual quadratic cost.
Default: 0 (no robustification).

MaxIter Maximum number of iterations for the estimation algorithm,
specified as a positive integer.
Default: 20.

1-393

idnlhw

Property Name Description

MaxSize The number of elements (size) of the largest matrix to be formed by
the algorithm. Computational loops are used for larger matrices.
Use this value for memory/speed trade-off.
MaxSize can be any positive integer. Default: 250000.

Note The original data matrix of u and y must be smaller than
MaxSize.

SearchMethod Method used by the iterative search algorithm.
Assignable values:

• 'Auto'— Automatically chooses from the following methods.

• 'gn' — Gauss-Newton method.

• 'gna' — Adaptive Gauss-Newton method.

• 'grad' — A gradient method.

• 'lm' — Levenberg-Marquardt method.

• 'lsqnonlin' — Nonlinear least-squares method (requires the
Optimization Toolbox product). This method handles only the
'Trace' criterion.

Tolerance Specifies to terminate the iterative search when the expected
improvement of the parameter values is less than Tolerance,
specified as a positive real value in %.
Default: 0.01.

1-394

idnlhw

Property Name Description

Display Toggles displaying or hiding estimation progress information in the
MATLAB Command Window.
Default: 'Off'.
Assignable values:

• 'Off' — Hide estimation information.

• 'On' — Display estimation information.

Weighting Positive semi-definite matrix W used for weighted trace minimization.
When Criterion = 'Trace', trace(E'*E*W) is minimized.
Weighting can be used to specify relative importance of outputs in
multiple-input multiple-output models (or reliability of corresponding
data) when W is a diagonal matrix of nonnegative values. Weighting
is not useful in single-output models. By default, Weighting is an
identity matrix of size equal to the number of outputs.

Definitions Hammerstein-Wiener Model Structure

This block diagram represents the structure of a Hammerstein-Wiener
model:

��� �������
��������	��

�

�����	
�����
��

 ���
��������	��

!

"�� #��

where:

• w(t) = f(u(t)) is a nonlinear function transforming input data u(t). w(t)
has the same dimension as u(t).

• x(t) = (B/F)w(t) is a linear transfer function. x(t) has the same
dimension as y(t).

where B and F are similar to polynomials in the linear Output-Error
model, as described in “What Are Polynomial Models?”.

1-395

idnlhw

For ny outputs and nu inputs, the linear block is a transfer function
matrix containing entries:

B q

F q
j i

j i

,

,

()

()

where j = 1,2,...,ny and i = 1,2,...,nu.

• y(t) = h(x(t)) is a nonlinear function that maps the output of the linear
block to the system output.

w(t) and x(t) are internal variables that define the input and output
of the linear block, respectively.

Because f acts on the input port of the linear block, this function is
called the input nonlinearity. Similarly, because h acts on the output
port of the linear block, this function is called the output nonlinearity.
If system contains several inputs and outputs, you must define the
functions f and h for each input and output signal.

You do not have to include both the input and the output nonlinearity in
the model structure. When a model contains only the input nonlinearity
f, it is called a Hammerstein model. Similarly, when the model contains
only the output nonlinearity h), it is called a Wiener model.

The nonlinearities f and h are scalar functions, one nonlinear function
for each input and output channel.

The Hammerstein-Wiener model computes the output y in three stages:

1 Computes w(t) = f(u(t)) from the input data.

w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the
value of the output a given time t depends only on the input value at
time t.

You can configure the input nonlinearity as a sigmoid network,
wavelet network, saturation, dead zone, piecewise linear function,

1-396

idnlhw

one-dimensional polynomial, or a custom network. You can also
remove the input nonlinearity.

2 Computes the output of the linear block using w(t) and initial
conditions: x(t) = (B/F)w(t).

You can configure the linear block by specifying the numerator B
and denominator F orders.

3 Compute the model output by transforming the output of the linear
block x(t) using the nonlinear function h: y(t) = h(x(t)).

Similar to the input nonlinearity, the output nonlinearity is a static
function. Configure the output nonlinearity in the same way as the
input nonlinearity. You can also remove the output nonlinearity,
such that y(t) = x(t).

Resulting models are idnlhw objects that store all model data, including
model parameters and nonlinearity estimator. See the idnlhw reference
page for more information.

idnlhw States

This toolbox requires states for simulation and prediction using
sim(idnlhw), predict, and compare. States are also necessary for
linearization of nonlinear ARX models using linearize(idnlhw). This
toolbox provides a number of options to facilitate how you specify the
initial states. For example, you can use findstates and data2state
to automatically search for state values in simulation and prediction
applications. For linearization, use findop. You can also specify the
states manually.

The states of the Hammerstein-Wiener model correspond to the states
of the linear block in the Hammerstein-Wiener model structure:

1-397

idnlhw

The linear block contains all the dynamic elements of the model. If
this linear model is not a state-space structure, the states are defined
as those of model Mss, where Mss = idss(Model.LinearModel) and
Model is the idnlhw object.

Examples Create default Hammerstein-Wiener model structure:

m = idnlhw([2 2 1]) % na=nb=2 and nk=1
% m has piecewise linear input and output nonlinearity

Create nonlinear ARX model structure with sigmoid network
nonlinearity:

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

Create Hammerstein-Wiener model with specific input-output
nonlinearities:

m=idnlhw([2 2 1],'sigmoidnet','deadzone')
% Equivalent to m=idnlhw([2 2 1],'sig','dead')
% Nonlinearities have default configuration

Create Hammerstein-Wiener model and configure the nonlinearity
objects:

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

Create a Hammerstein model (no output nonlinearity):

m=idnlhw([2 2 1],'saturation',[])
% [] specifies unitgain output nonlinearity

1-398

idnlhw

Configure the Hammerstein-Wiener model and estimate models
parameters:

m0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,m0); % equivalent to m=nlhw(data,m0)

Construct default Hammerstein-Wiener model using an input-output
polynomial model of Output-Error structure:

% Construct an input-output polynomial model of OE structure.
B = [0.8 1];
F = [1 -1.2 0.5];
LinearModel = idpoly(1, B, 1,1, F, 'Ts', 0.1);

% Construct Hammerstein-Wiener model using OE model
% as its linear component.
m1 = idnlhw(LinearModel, 'saturation', [])

See Also customnet | idnlmodel | linear | linearize(idnlhw) | nlhw | pem |
poly1d | saturation | sigmoidnet | wavenet | saturation

Tutorials • “Example – Using nlhw to Estimate Hammerstein-Wiener Models”

• “Estimate Hammerstein-Wiener Models Using Linear OE Models”

How To • “Identifying Hammerstein-Wiener Models”

• “Using Linear Model for Hammerstein-Wiener Estimation”

1-399

idnlmodel

Purpose Superclass for nonlinear models

Description You do not use the idnlmodel class directly. Instead, idnlmodel
defines the common properties and methods inherited by its subclasses,
idnlarx, idnlgrey, and idnlhw.

idnlmodel
Properties

The following table lists the properties shared by the idnlarx,
idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.

Property Name Description

InputName Specifies the names of individual input channels.
Default: {'u1';'u2';...;'uNu'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an nu-by-1 cell array. For
example:
{'thrust'; 'aileron deflection'}

InputUnit Specifies the units of each input channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an nu-by-1 cell array.

Name Name of the model, specified as a string.

NoiseVariance Noise variance (covariance matrix) of the model innovations e.
Assignable value is an ny-by-ny matrix.
Typically set automatically by the estimation algorithm.

1-400

idnlmodel

Property Name Description

OutputName Specifies the names of individual output channels.
Default: {'y1';'y2';...;'yNy'}.

Assignable values:

• For single-output models, a string. For example, 'torque'.

• For multiple-output models, an ny-by-1 cell array. For
example:
{'thrust'; 'aileron deflection'}

OutputUnit Specifies the units of each output channel.
Default: ''.

Assignable values:

• For single-output models, a string. For example, 'm/s'.

• For multiple-output models, an ny-by-1 cell array.

TimeUnit Unit of the sampling interval and time vector, specified as one
of the following:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'.

1-401

idnlmodel

Property Name Description

TimeVariable Independent variable for the inputs, outputs, and—when
available—internal states, specified as a string.
Default: 't' (time).

Ts Sampling interval with the unit specified by TimeUnit.
Default: 1.

Assignable values:

• For discrete-time models, positive scalar value of the
sampling interval.

• For continuous-time models, 0(idnlgrey models only).

See Also

idnlarx

idnlgrey

idnlhw

1-402

idpar

Purpose Create parameter for initial states and input level estimation

Syntax p = idpar(paramvalue)
p = idpar(paramname,paramvalue)

Description p = idpar(paramvalue) creates an estimable parameter with initial
value paramvalue. The parameter, p, is either scalar or array-valued,
with the same dimensions as paramvalue. You can configure attributes
of the parameter, such as which elements are fixed and which are
estimated, and lower and upper bounds.

p = idpar(paramname,paramvalue) sets the Name property of p to the
string paramname.

Tips Use idpar to create estimable parameters for:

• Initial state estimation for state-space model estimation (ssest),
prediction (predict), and forecasting (forecast)

• Explicit initial state estimation with findstates

• Input level estimation for process model estimation with pem

Specifying estimable state values or input levels gives you explicit
control over the behavior of individual state values during estimation.

Input
Arguments

paramvalue

Initial parameter value.

paramvalue is a numeric scalar or array that determines both the
dimensions and initial values of the estimable parameter p. For
example, p = idpar(eye(3)) creates a 3-by-3 parameter whose initial
value is the identity matrix.

paramvalue should be:

• A column vector of length Nx, the number of states to estimate, if you
are using p for initial state estimation.

1-403

idpar

• An Nx-by-Ne array, if you are using p for initial state estimation with
multi-experiment data. Ne is the number of experiments.

• A column vector of length Nu, the number of inputs to estimate, if you
are using p for input level estimation.

• An Nu-by-Ne array, if you are using p for input level estimation with
multi-experiment data.

If the initial value of a parameter is unknown, use NaN.

paramname

String specifying the Name property of p.

The Name property is not used in state estimation or input level
estimation. You can optionally assign a name for convenience. For
example, you can assign x0 as the name of a parameter created for
initial state estimation.

Default: 'par'

Output
Arguments

p

Estimable parameter, specified as a param.Continuous object.

p can be either scalar- or array-valued. p takes its dimensions and
initial value from paramvalue.

p contains the following fields:

• Value— Scalar or array value of the parameter.

The dimension and initial value of p.Value are taken from
paramvalue when p is created.

• Minimum— Lower bound for the parameter value. When you use p in
state estimation or input value estimation, the estimated value of the
parameter does not drop below p.Minimum.

The dimensions of p.Minimummust match the dimensions of p.Value.

For array-valued parameters, you can:

1-404

idpar

- Specify lower bounds on individual array elements. For example,
p.Minimum([1 4]) = -5 .

- Use scalar expansion to set the lower bound for all array elements.
For example, p.Minimum = -5

Default: -Inf

• Maximum — Upper bound for the parameter value. When you use p
in state estimation or input value estimation, the estimated value of
the parameter does not exceed p.Maximum.

The dimensions of p.Maximummust match the dimensions of p.Value.

For array-valued parameters, you can:

- Specify upper bounds on individual array elements. For example,
p.Maximum([1 4]) = 5 .

- Use scalar expansion to set the upper bound for all array elements.
For example, p.Maximum = 5

Default: Inf

• Free — Boolean specifying whether the parameter is a free
estimation variable.

The dimensions of p.Free must match the dimensions of p.Value.
By default, all values are free (p.Free = true).

If you want to estimate p.Value(k) , set p.Free(k) = true. To fix
p.Value(k), set p.Free(k) = false. Doing so allows you to control
which states or input values are estimated and which are not.

For array-valued parameters, you can:

- Fix individual array elements. For example, p.Free([1
4]) = false; p.Free = [1 0; 0 1].

- Use scalar expansion to fix all array elements. For example,
p.Free = false.

Default: true (1)

• Scale— Scaling factor for normalizing the parameter value.

1-405

idpar

p.Scale is not used in initial state estimation or input value
estimation.

Default: 1

• Info— Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store
strings that describe parameter units and labels.
For example, p.Info(1,1).Unit = 'rad/m';
p.Info(1,1).Label = 'engine speed'.

The dimensions of p.Info must match the dimensions of p.Value.

Default: '' for both Label and Unit fields

• Name — Parameter name.

This property is read-only. It is set to the paramname input argument
when you create the parameter.

Default: ''

Examples Create and Configure Parameter for State Estimation

Create and configure a parameter for estimating the initial state values
of a 4-state system. Fix the first state value to 1. Limit the second and
third states to values between 0 and 1.

paramvalue = [1; nan(3,1)];
p = idpar('x0',paramvalue);
p.Free(1) = 0;
p.Minimum([2 3]) = 0;
p.Maximum([2 3]) = 1;

The column vector paramvalue specifies an initial value of 1 for the first
state. paramvalue further specifies unknown values for the remaining
3 states.

Setting p.Free(1) to false fixes p.Value(1) to 1. Estimation using p
does not alter that value.

1-406

idpar

Setting p.Minimum and p.Maximum for the second and third entries in p
limits the range that those values can take when p is used in estimation.

You can now use p in initial state estimation, such as
with the findstates command. For example, use opt =
findstatesOptions('InitialState',p) to create a findstates
options set that uses p. Then, call findstates with that options set.

See Also predict | findstates(idParametric) | findstatesOptions |
forecast | ssest | pem

1-407

idpoly

Purpose Polynomial model with identifiable parameters

Syntax sys = idpoly(A,B,C,D,F,NoiseVariance,Ts)
sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value)

sys = idpoly(A)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts)
sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value)

sys = idpoly(sys0)
sys = idpoly(sys0,'split')

Description sys = idpoly(A,B,C,D,F,NoiseVariance,Ts) creates a polynomial
model with identifiable coefficients. A, B, C, D, and F specify the initial
values of the coefficients. NoiseVariance specifies the initial value of
the variance of the white noise source. Ts is the model sampling time.

sys = idpoly(A,B,C,D,F,NoiseVariance,Ts,Name,Value) creates
a polynomial model using additional options specified by one or more
Name,Value pair arguments.

sys = idpoly(A) creates a time series model with only an
autoregressive term. In this case, sys represents the AR model given
by A(q–1) y(t) = e(t). The noise e(t) has variance 1. A specifies the initial
values of the estimable coefficients.

sys = idpoly(A,[],C,D,[],NoiseVariance,Ts) creates a time series
model with an autoregressive and a moving average term. The inputs
A, C, and D, specify the initial values of the estimable coefficients.
NoiseVariance specifies the initial value of the noise e(t). Ts is the
model sampling time. (Omit NoiseVariance and Ts to use their
default values.)

If D = [], then sys represents the ARMA model given by:

1-408

idpoly

A q y t C q e t 1 1 .

sys = idpoly(A,[],C,D,[],NoiseVariance,Ts,Name,Value) creates
a time series model using additional options specified by one or more
Name,Value pair arguments.

sys = idpoly(sys0) converts any dynamic system model, sys0, to
idpoly model form.

sys = idpoly(sys0,'split') converts sys0 to idpoly model form,
and treats the last Ny input channels of sys0 as noise channels in the
returned model. sys0 must be a numeric (non-identified) tf, zpk, or ss
model object. Also, sys0 must have at least as many inputs as outputs.

Object
Description

An idpoly model represents a system as a continuous-time or
discrete-time polynomial model with identifiable (estimable) coefficients.

A polynomial model of a system with input vector u, output vector y,
and disturbance e takes the following form in discrete time:

A q y t
B q
F q

u t
C q
D q

e t() ()
()
()

()
()
()

()

In continuous time, a polynomial model takes the following form:

A s Y s
B s
F s

U s
C s
D s

E s() ()
()
()

()
()
()

()

U(s) are the Laplace transformed inputs to sys. Y(s) are the Laplace
transformed outputs. E(s) is the Laplace transform of the disturbance.

For idpoly models, the coefficients of the polynomials A, B, C, D, and F
can be estimable parameters. The idpoly model stores the values of
these matrix elements in the a, b, c, d, and f properties of the model.

1-409

idpoly

Time series models are special cases of polynomial models for systems
without measured inputs. For AR models, b and f are empty, and c and
d are 1 for all outputs. For ARMA models, b and f are empty, while d
is 1.

There are three ways to obtain an idpoly model:

• Estimate the idpoly model based on output or input-output
measurements of a system, using such commands as polyest, arx,
armax, oe, bj, iv4, or ivar. These estimation commands estimate
the values of the free polynomial coefficients. The estimated values
are stored in the a, b, c, d, and f properties of the resulting idpoly
model. The Report property of the resulting model stores information
about the estimation, such as handling of initial conditions and
options used in estimation.

When you obtain an idpoly model by estimation, you can extract
estimated coefficients and their uncertainties from the model using
commands such as polydata, getpar, or getcov.

• Create an idpoly model using the idpoly command.

You can create an idpoly model to configure an initial
parameterization for estimation of a polynomial model to fit
measured response data. When you do so, you can specify constraints
on the polynomial coefficients. For example, you can fix the values
of some coefficients, or specify minimum or maximum values for
the free coefficients. You can then use the configured model as an
input argument to polyest to estimate parameter values with those
constraints.

• Convert an existing dynamic system model to an idpoly model using
the idpoly command.

Examples Multi-Output ARMAX Model

Create an idpoly model representing the one-input, two-output
ARMAX model described by the following equations:

1-410

idpoly

y t y t y t y t

u t u t u t
1 1 2 20 5 1 0 9 1 0 1 2

5 1 2 2

. . .

e t e t

y t y t y t

u t

1 1

2 2 2

0 01 1

0 05 1 0 3 2

10 2

.

. .

ee t e t e t2 2 20 1 1 0 02 2 . . .

y1 and y2 are the two outputs, and u is the input. e1 and e2 are the white
noise disturbances on the outputs y1 and y2 respectively.

To create the idpoly model, define the A, B, and C polynomials that
describe the relationships between the outputs, inputs, and noise
values. (Because there are no denominator terms in the system
equations, B and F are 1.)

Define the cell array containing the coefficients of the A polynomials.

A = cell(2,2);
A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];
A{2,2} = [1 0.05 0.3];

You can read the values of each entry in the A cell array from the left
side of the equations describing the system. For example, A{1,1}
describes the polynomial that gives the dependence of y1 on itself. This
polynomial is A11 = 1 + 0.5q

–1, because each factor of q–1 corresponds
to a unit time decrement. Therefore, A{1,1} = [1 0.5], giving the
coefficients of A11 in increasing exponents of q

–1.

Similarly, A{1,2} describes the polynomial that gives the dependence of
y1 on y2. From the equations, A12 = 0 + 0.9q

–1 + 0.1q–2. Thus, A{1,2}
= [0 0.9 0.1].

The remaining entries in A are similarly constructed.

Define the cell array containing the coefficients of the B polynomials.

B = cell(2,1);
B{1,1} = [1 5 2];

1-411

idpoly

B{2,1} = [0 0 10];

B describes the polynomials that give the dependence of the outputs
y1 and y2 on the input u. From the equations, B11 = 1 + 5q

–1 + 2q–2.
Therefore, B{1,1} = [1 5 2].

Similarly, from the equations, B21 = 0 + 0q
–1 + 10q–2. Therefore, B{2,1}

= [0 0 10].

Define the cell array containing the coefficients of the C polynomials.

C = cell(2,1);
C{1,1} = [1 0.01];
C{2,1} = [1 0.1 0.02];

C describes the polynomials that give the dependence of the outputs y1
and y2 on the noise terms e1 and e2. The entries of C can be read from
the equations similarly to those of A and B.

Create an idpoly model with the specified coefficients.

sys = idpoly(A,B,C)

sys =
Discrete-time ARMAX model:

Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + C(z
A(z) = 1 + 0.5 z^-1

A_2(z) = 0.9 z^-1 + 0.1 z^-2

B(z) = 1 + 5 z^-1 + 2 z^-2

C(z) = 1 + 0.01 z^-1

Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
A(z) = 1 + 0.05 z^-1 + 0.3 z^-2

B(z) = 10 z^-2

1-412

idpoly

C(z) = 1 + 0.1 z^-1 + 0.02 z^-2

Sample time: unspecified

Parameterization:
Polynomial orders: na=[1 2;0 2] nb=[3;1] nc=[1;2] nk=[0;2]

Number of free coefficients: 12
Use "polydata", "getpvec", "getcov" for parameters and their uncert

Status:
Created by direct construction or transformation. Not estimated.

The display shows all the polynomials and allows you to verify them.
The display also states that there are 12 free coefficients. Leading
terms of diagonal entries in A are always fixed to 1. Leading terms of all
other entries in A are always fixed to 0.

You can use sys to specify an initial parametrization for estimation
with such commands as polyest or armax.

Tips • Although idpoly supports continuous-time models, idtf and
idproc allow more choices for estimation of continuous-time models.
Therefore, for some continuous-time applications, these model types
are preferable.

Input
Arguments

A,B,C,D,F

Initial values of polynomial coefficients.

For SISO models, specify the initial values of the polynomial coefficients
as row vectors. Specify the coefficients in order of:

• Ascending powers of z–1 or q–1 (for discrete-time polynomial models).

• Descending powers of s or p (for continuous-time polynomial models).

The leading coefficients of A, C, D, and F must be 1. Use NaN for any
coefficient whose initial value is not known.

1-413

idpoly

For MIMO models with Ny outputs and Nu inputs, A, B, C, D, and F are
cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and
noise values.

PolynomialDimension Relation Described

A Ny-by-Ny array of row vectors A{i,j} contains coefficients
of relation between output yi
and output yj

B,F Ny-by-Nu array of row vectors B{i,j} and F{i,j}contain
coefficients of relations
between output yi and input
uj

C,D Ny-by-1 array of row vectors C{i} and D{i}contain
coefficients of relations
between output yi and noise
ei

The leading coefficients of the diagonal entries of A (A{i,i},i=1:Ny)
must be 1. The leading coefficients of the off-diagonal entries of A must
be zero, for causality. The leading coefficients of all entries of C, D, and F
, must be 1.

Use [] for any polynomial that is not present in the desired model
structure. For example, to create an ARX model, use [] for C, D, and F.
For an ARMA time series, use [] for B and F.

Default: B = []; C = 1 for all outputs; D = 1 for all outputs;
F = []

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.
To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

1-414

idpoly

Default: –1 (discrete-time model with unspecified sampling time)

NoiseVariance

The variance (covariance matrix) of the model innovations e.

An identified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, a
model estimation function (such as polyest) determines this variance.
Use this input to specify an initial value for the noise variance when
you create an idpoly model.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of outputs
in the system.

Default: Ny-by-Ny identity matrix

sys0

Dynamic system.

Any dynamic system to be converted into an idpoly object.

When sys0 is an identified model, its estimated parameter covariance
is lost during conversion. If you want to translate the estimated
parameter covariance during the conversion, use translatecov.

For the syntax sys = idpoly(sys0,'split'), sys0 must be a
numeric (non-identified) tf, zpk, or ss model object. Also, sys0 must
have at least as many inputs as outputs. Finally, the subsystem
sys0(:,Ny+1:Nu) must be biproper.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1-415

idpoly

Use Name,Value arguments to specify additional properties
of idpoly models during model creation. For example,
idpoly(A,B,C,D,F,1,0,'InputName','Voltage') creates an idpoly
model with the InputName property set to Voltage.

Properties idpoly object properties include:

a,b,c,d,f

Values of polynomial coefficients.

If you create an idpoly model sys using the idpoly command, sys.a,
sys.b, sys.c, sys.d, and sys.f contain the initial coefficient values
that you specify with the A, B, C, D, and F input arguments, respectively.

If you obtain an idpoly model by identification, then sys.a, sys.b,
sys.c, sys.d, and sys.f contain the estimated values of the coefficients.

For an idpoly model sys, each property sys.a, sys.b, sys.c, sys.d,
and sys.f is an alias to the corresponding Value entry in the Structure
property of sys. For example, sys.a is an alias to the value of the
property sys.Structure.a.Value.

For SISO polynomial models, the values of the numerator coefficients
are stored as a row vector in order of:

• Ascending powers of z–1 or q–1 (for discrete-time transfer functions).

• Descending powers of s or p (for continuous-time transfer functions).

The leading coefficients of A, C, and D are fixed to 1. Any coefficient
whose initial value is not known is stored as NaN.

For MIMO models with Ny outputs and Nu inputs, A, B, C, D, and F are
cell arrays of row vectors. Each entry in the cell array contains the
coefficients of a particular polynomial that relates input, output, and
noise values.

1-416

idpoly

PolynomialDimension Relation Described

A Ny-by-Ny array of row vectors A{i,j} contains coefficients
of relation between output yi
and output yj

B,F Ny-by-Nu array of row vectors B{i,j} and F{i,j}contain
coefficients of relations
between output yi and input
uj

C,D Ny-by-1 array of row vectors C{i} and D{i}contain
coefficients of relations
between output yi and noise
ei

The leading coefficients of the diagonal entries of A (A{i,i}, i=1:Ny)
are fixed to 1. The leading coefficients of the off-diagonal entries of A
are fixed to zero. The leading coefficients of all entries of C, D, and F
, are fixed to 1.

For a time series (a model with no measured inputs), B = [] and F
= [].

Default: B = []; C = 1 for all outputs; D = 1 for all outputs;
F = []

Variable

String specifying the polynomial model display variable. Variable
requires one of the following values:

• 'z^-1' — Default for discrete-time models

• 'q^-1' — Equivalent to 'z^-1'

• 's' — Default for continuous-time models

• 'p' — Equivalent to 's'

The value of Variable is reflected in the display, and also affects the
interpretation of the A, B, C, D, and F coefficient vectors for discrete-time

1-417

idpoly

models. For Variable = 'z^-1' or 'q^-1', the coefficient vectors are
ordered as ascending powers of the variable.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

If you create an idpoly model sys using the idpoly command,
sys.ioDelay contains the initial values of the transport delay that you
specify with a Name,Value argument pair.

If you obtain an idpoly model sys by identification, then sys.ioDelay
contains the estimated values of the transport delay.

For an idpoly model sys, the property sys.ioDelay is an alias to the
value of the property sys.Structure.ioDelay.Value.

For continuous-time systems, transport delays are expressed in the
time unit stored in the TimeUnit property. For discrete-time systems,
specify transport are expressed as integers denoting delay of a multiple
of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay is a
Ny-by-Nu array, where each entry is a numerical value representing the
transport delay for the corresponding input/output pair. You can set
ioDelay to a scalar value to apply the same delay to all input/output
pairs.

Default: 0 for all input/output pairs

IntegrateNoise

Logical vector, denoting presence or absence of integration on noise
channels.

Specify IntegrateNoise as a logical vector of length equal to the
number of outputs.

IntegrateNoise(i) = true indicates that the noise channel for the
ith output contains an integrator. In this case, the corresponding

1-418

idpoly

D polynomial contains an additional term which is not represented
in the property sys.d. This integrator term is equal to [1 0] for
continuous-time systems, and equal to [1 -1] for discrete-time systems.

Default: 0 for all output channels

Structure

Information about the estimable parameters of the idpoly
model. sys.Structure.a, sys.Structure.b, sys.Structure.c,
sys.Structure.d, and sys.Structure.f contain information about the
polynomial coefficients. sys.Structure.ioDelay contains information
about the transport delay. sys.Structure.IntegrateNoise contain
information about the integration terms on the noise. Each contains
the following fields:

• Value— Parameter values. For example, sys.Structure.a.Value
contains the initial or estimated values of the A coefficients.

NaN represents unknown parameter values.

For SISO models, each property sys.a, sys.b, sys.c, sys.d, sys.f,
and sys.ioDelay is an alias to the corresponding Value entry in the
Structure property of sys. For example, sys.a is an alias to the
value of the property sys.Structure.a.Value

For MIMO models, sys.a{i,j} is an alias to
sys.Structure.a(i,j).Value, and similarly for the other
identifiable coefficient values.

• Minimum— Minimum value that the parameter can assume during
estimation. For example, sys.Structure.ioDelay.Minimum = 0.1
constrains the transport delay to values greater than or equal to 0.1.

sys.Structure.ioDelay.Minimum must be greater than or equal
to zero.

• Maximum— Maximum value that the parameter can assume during
estimation.

1-419

idpoly

• Free — Logical value specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, if B is a 3-by-3 matrix, sys.Structure.a.Free = eyes(3)
fixes all of the off-diagonal entries in B to the values specified in
sys.Structure.b.Value. In this case, only the diagonal entries in B
are estimable.

For fixed values, such as the leading coefficients in
sys.Structure.a.Value, the corresponding value of Free is always
false.

• Scale — Scale of the parameter’s value. Scale is not used in
estimation.

• Info— Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

For a MIMO model with Ny outputs and Nu inputs, the dimensions of
the Structure elements are as follows:

• sys.Structure.a — Ny-by-Ny

• sys.Structure.b — Ny-by-Nu

• sys.Structure.c — Ny-by-1

• sys.Structure.d — Ny-by-1

• sys.Structure.f — Ny-by-Nu

An inactive polynomial, such as the B polynomial in a time series model,
is not available as a parameter in the Structure property. For example,
sys = idpoly([1 -0.2 0.5]) creates an AR model. sys.Structure
contains the fields sys.Structure.a, sys.Structure.ioDelay, and
sys.Structure.IntegrateNoise. However, there is no field in
sys.Structure corresponding to b, c, d, or f.

NoiseVariance

1-420

idpoly

The variance (covariance matrix) of the model innovations e.

An identified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as arx) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of outputs
in the system.

Report

Information about the estimation process.

Report contains the following fields:

• InitialCondition — Whether estimation estimated initial
conditions or fixed them at zero.

• Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

• Parameters — Estimated values of model parameters and their
covariance.

• OptionsUsed— Options used during estimation (see ssestOptions
or n4sidOptions).

• RandState— Random number stream state at start of estimation.

• Status— Whether model was obtained by construction, estimated,
or modified after estimation.

• Method — Name of estimation method used.

• DataUsed — Attributes of data used for estimation, such as name
and sampling time.

• Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion. Not available when the model is
estimated using arx or instrument variable approaches.

1-421

idpoly

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idpoly, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.
To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

Changing this property does not discretize or resample the model.
Use c2d and d2c to convert between continuous- and discrete-time
representations. Use d2d to change the sampling time of a discrete-time
system.

Default: –1 (discrete-time model with unspecified sampling time)

TimeUnit

1-422

idpoly

String representing the unit of the time variable. For continuous-time
models, this property represents any time delays in the model. For
discrete-time models, it represents the sampling time Ts. Use any of
the following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to
{'controls(1)';'controls(2)'}.

1-423

idpoly

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
For a single-input model, set InputUnit to a string. For a multi-input
model, set InputUnit to a cell array of strings. InputUnit has no effect
on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group
by name. Specify input groups as a structure. In this structure, field
names are the group names, and field values are the input channels
belonging to each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields

1-424

idpoly

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. For a single-output model, set OutputUnit to a string. For
a multi-output model, set OutputUnit to a cell array of strings.
OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure. In this structure, field

1-425

idpoly

names are the group names, and field values are the output channels
belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

See Also polydata | arx | armax | bj | oe | ar | polyest |
setPolyFormat | idss | idproc | idtf | iv4 | ivar |
translatecov

1-426

idpoly

Related
Examples

• “How to Estimate Polynomial Models in the GUI”
• “How to Estimate Polynomial Models at the Command Line”
• “Polynomial Sizes and Orders of Multi-Output Polynomial Models”

Concepts • “What Are Polynomial Models?”
• “Dynamic System Models”

1-427

idproc

Purpose Continuous-time process model with identifiable parameters

Syntax sys = idproc(type)
sys = idproc(type,Name,Value)

Description sys = idproc(type) creates a continuous-time process model with
identifiable parameters. type is a string that specifies aspects of the
model structures, such as the number of poles in the model, whether
the model includes an integrator, and whether the model includes a
time delay.

sys = idproc(type,Name,Value) creates a process model with
additional attributes specified by one or more Name,Value pair
arguments.

Object
Description

An idproc model represents a system as a continuous-time process
model with identifiable (estimable) coefficients.

A simple SISO process model has a gain, a time constant, and a delay:

sys
K

T s
ep

p

T sd

1 1
.

Kp is a proportional gain. Kp1 is the time constant of the real pole, and
Td is the transport delay (dead time).

More generally, idproc can represent process models with up to three
poles and a zero:

sys K
T s

T s T s T s
ep

z

p p p

T sd

1

1 1 11 2 3
.

Two of the poles can be a complex conjugate (underdamped) pair. In
that case, the general form of the process model is:

1-428

idproc

sys K
T s

T s T s T s
ep

z

p

T sd

1

1 2 12
3

.

Tω is the time constant of the complex pair of poles, and ζ is the
associated damping constant.

In addition, any idproc model can have an integrator. For example, the
following is a process model that you can represent with idproc:

sys K
s T s T s

ep
T sd

1

1 2 2

.

This model has no zero (Tz = 0). The model has a complex pair of poles.
The model also has an integrator, represented by the 1/s term.

For idproc models, all the time constants, the delay, the proportional
gain, and the damping coefficient can be estimable parameters. The
idproc model stores the values of these parameters in properties of the
model such as Kp, Tp1, and Zeta. (See “Properties” on page 1-435 for
more information.)

A MIMO process model contains a SISO process model corresponding to
each input-output pair in the system. For idproc models, the form of
each input-output pair can be independently specified. For example, a
two-input, one-output process can have one channel with two poles and
no zero, and another channel with a zero, a pole, and an integrator. All
the coefficients are independently estimable parameters.

There are two ways to obtain an idproc model:

• Estimate the idproc model based on output or input-output
measurements of a system, using the procest command. procest
estimates the values of the free parameters such as gain, time
constants, and time delay. The estimated values are stored as
properties of the resulting idprocmodel. For example, the properties
sys.Tz and sys.Kp of an idproc model sys store the zero time
constant and the proportional gain, respectively. (See “Properties”
on page 1-435 for more information.) The Report property of the

1-429

idproc

resulting model stores information about the estimation, such as
handling of initial conditions and options used in estimation.

When you obtain an idproc model by estimation, you can extract
estimated coefficients and their uncertainties from the model using
commands such as getpar and getcov.

• Create an idproc model using the idproc command.

You can create an idproc model to configure an initial
parameterization for estimation of a process model. When you do so,
you can specify constraints on the parameters. For example, you can
fix the values of some coefficients, or specify minimum or maximum
values for the free coefficients. You can then use the configured
model as an input argument to procest to estimate parameter values
with those constraints.

Examples SISO Process Model with Complex Poles and Time Delay

Create a process model with a pair of complex poles and a time delay.
Set the initial value of the model to the following:

sys
s s

e s

0 01

1 2 0 1 10 10 2
5.

.
.

Create a process model with the specified structure.

sys = idproc('P2DU')

sys =
Process model with transfer function:

Kp
G(s) = ---------------------- * exp(-Td*s)

1+2*Zeta*Tw*s+(Tw*s)^2

Kp = NaN
Tw = NaN

1-430

idproc

Zeta = NaN
Td = NaN

Parameterization:
'P2DU'

Number of free coefficients: 4
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

The input string 'P2DU' specifies an underdamped pair of poles and a
time delay. The display shows that sys has the desired structure. The
display also shows that the four free parameters, Kp, Tw, Zeta, and Td
are all initialized to NaN.

Set the initial values of all parameters to the desired values.

sys.Kp = 0.01;
sys.Tw = 10;
sys.Zeta = 0.1;
sys.Td = 5;

You can use sys to specify this parametrization and these initial
guesses for process model estimation with procest.

MIMO Process Model

Create a one-input, three-output process model, where each channel
has two real poles and a zero, but only the first channel has a time
delay, and only the first and third channels have an integrator.

type = {'P2ZDI';'P2Z';'P2ZI'};
sys = idproc(type);

Providing an array of type strings causes idproc to create a MIMO
model where each type string in the array defines the structure of the
corresponding I/O pair. Since type is a column vector of strings, sys

1-431

idproc

is a one-input, 3-output model having the specified parametrization
structure. The string type{k,1} specifies the structure of the
subsystem sys(k,1). All identifiable parameters are initialized to NaN.

Array of Process Models

Create a 3-by-1 array of process models, each containing one output and
two input channels.

Create cell array of type strings.

type1 = {'P1D','P2DZ'};
type2 = {'P0','P3UI'};
type3 = {'P2D','P2DI'};
type = cat(3,type1,type2,type3);
size(type)

ans =

1 2 3

Use type to create the array.

sysarr = idproc(type);

The first two dimensions of the cell array type set the output and input
dimensions of each model in the array of process models. The remaining
dimensions of the cell array set the array dimensions. Thus, sysarr is a
3-model array of 2-input, one-output process models.

Select a model from the array.

sysarr(:,:,2)

Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
From input 1 to output 1:
G11(s) = Kp

Kp = NaN

1-432

idproc

From input 2 to output 1:
Kp

G12(s) = ----------------------------------
s(1+2*Zeta*Tw*s+(Tw*s)^2)(1+Tp3*s)

Kp = NaN
Tw = NaN

Zeta = NaN
Tp3 = NaN

Parameterization:
'P0' 'P3IU'

Number of free coefficients: 5
Use "getpvec", "getcov" for parameters and their uncertainties.

Status:
Created by direct construction or transformation. Not estimated.

This two-input, one-output model corresponds to the type2 entry in
the type cell array.

Input
Arguments

type

String or cell array of strings characterizing the model structure.

For SISO models, type is a string made up of a series of characters that
specify aspects of the model structure.

Characters Meaning

Pk A process model with k poles (not including an
integrator). k must be 0, 1, 2, or 3.

Z The process model includes a zero (Tz ≠ 0). A type
string with P0 cannot include Z (a process model with
no poles cannot include a zero).

1-433

idproc

Characters Meaning

D The process model includes a time delay (deadtime)
(Td ≠ 0).

I The process model includes an integrator (1/s).

U The process model is underdamped. In this case, the
process model includes a complex pair of poles

Every type string must begin with one of P0, P1, P2, or P3. All other
components of the string are optional.

Example type strings include:

• 'P1D' specifies a process model with one pole and a time delay
(deadtime) term:

sys
K

T s
ep

p

T sd

1 1
.

Kp, Tp1, and Td are the identifiable parameters of this model.

• 'P2U' creates a process model with a pair of complex poles:

sys
K

T s T s

p
 1 2 2

.

Kp, Tw, and Zeta are the identifiable parameters of this model.

• 'P3ZDI' creates a process model with three poles. All poles are real,
because the string does not include U. The model also includes a zero,
a time delay, and an integrator:

sys K
T s

s T s T s T s
ep

z

p p p

T sd

1

1 1 11 2 3
.

1-434

idproc

The identifiable parameters of this model are Kp, Tz, Tp1, Tp2, Tp3,
and Td.

The values of all parameters in a particular model structure are
initialized to NaN. You can change them to finite values by setting the
values of the corresponding idproc model properties after you create
the model. For example, sys.Td = 5 sets the initial value of the time
delay of sys to 5.

For a MIMO process model with Ny outputs and Nu inputs, type
is an Ny-by-Nu cell array of strings specifying the structure of each
input/output pair in the model. For example, type{i,j} specifies the
type of the subsystem sys(i,j) from the jth input to the yth output.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value arguments to specify parameter
initial values and additional properties of idproc
models during model creation. For example, sys =
idproc('p2z','InputName','Voltage','Kp',10,'Tz',0);
creates an idtf model with the InputName property set to Voltage. The
command also initializes the parameter Kp to a value of 10, and Tz to 0.

Properties idproc object properties include:

Type

Cell array of strings characterizing the model structure.

For a SISO model sys, the property sys.Type contains a single string
specifying the structure of the system.

For a MIMO model with Ny outputs and Nu inputs, sys.Type is
an Ny-by-Nu cell array of strings specifying the structure of each
input/output pair in the model. For example, type{i,j} specifies the

1-435

idproc

structure of the subsystem sys(i,j) from the jth input to the ith
output.

The strings are made up of a series of characters that specify aspects of
the model structure, as follows.

Characters Meaning

Pk A process model with k poles (not including an
integrator). k is 0, 1, 2, or 3.

Z The process model includes a zero (Tz ≠ 0).

D The process model includes a time delay (deadtime)
(Td ≠ 0).

I The process model includes an integrator (1/s).

U The process model is underdamped. In this case, the
process model includes a complex pair of poles

If you create an idprocmodel sys using the idproc command, sys.Type
contains the strings that you specify with the type input argument.

If you obtain an idproc model by identification using procest, then
sys.Type contains the strings describing the model structures that you
specified for that identification.

In general, you cannot change the type string of an existing model.
However, you can change whether the model contains an integrator
using the property sys.Integration.

Kp,Tp1,Tp2,Tp3,Tz,Tw,Zeta,Td

Values of process model parameters.

If you create an idproc model using the idproc command, the values
of all parameters present in the model structure initialize by default
to NaN. The values of parameters not present in the model structure
are fixed to 0. For example, if you create a model, sys, of type 'P1D',
then Kp, Tp1, and Td are initialized to NaN and are identifiable (free)
parameters. All remaining parameters, such as Tp2 and Tz, are inactive

1-436

idproc

in the model. The values of inactive parameters are fixed to zero and
cannot be changed.

For a MIMO model with Ny outputs and Nu inputs, each parameter
value is an Ny-by-Nu cell array of strings specifying the corresponding
parameter value for each input/output pair in the model. For example,
sys.Kp(i,j) specifies the Kp value of the subsystem sys(i,j) from the
jth input to the ith output.

For an idproc model sys, each parameter value property such as
sys.Kp, sys.Tp1, sys.Tz, and the others is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.Tp3 is
an alias to the value of the property sys.Structure.Tp3.Value.

Default: For each parameter value, NaN if the process model
structure includes the particular parameter; 0 if the structure
does not include the parameter.

Integration

Logical value or matrix denoting the presence or absence of an
integrator in the transfer function of the process model.

For a SISO model sys, sys.Integration = true if the model contains
an integrator.

For a MIMO model, sys.Integration(i,j) = true if the transfer
function from the jth input to the ith output contains an integrator.

When you create a process model using the idproc command, the value
of sys.Integration is determined by whether the corresponding type
string contains I.

NoiseTF

Coefficients of the noise transfer function.

sys.NoiseTF stores the coefficients of the numerator and the
denominator polynomials for the noise transfer functionH(s) =N(s)/D(s).

1-437

idproc

sys.NoiseTF is a structure with fields num and den. Each field is a
cell array of Ny row vectors, where Ny is the number of outputs of sys.
These row vectors specify the coefficients of the noise transfer function
numerator and denominator in order of decreasing powers of s.

Typically, the noise transfer function is automatically computed by the
estimation function procest. You can specify a noise transfer function
that procest uses as an initial value. For example:

NoiseNum = {[1 2.2]; [1 0.54]};
NoiseDen = {[1 1.3]; [1 2]};
NoiseTF = struct('num', {NoiseNum}, 'den', {NoiseDen});
sys = idproc({'p2'; 'p1di'}); % 2-output, 1-input process model
sys.NoiseTF = NoiseTF;

Each vector in sys.NoiseTF.num and sys.NoiseTF.den must be of
length 3 or less (second-order in s or less). Each vector must start
with 1. The length of a numerator vector must be equal to that of the
corresponding denominator vector, so that H(s) is always biproper.

Default:
struct('num',{num2cell(ones(Ny,1))},'den',{num2cell(ones(Ny,1))})

Structure

Information about the estimable parameters of the idproc model.

sys.Structure includes one entry for each parameter in the model
structure of sys. For example, if sys is of type 'P1D', then sys
includes identifiable parameters Kp, Tp1, and Td. Correspondingly,
sys.Structure.Kp, sys.Structure.Tp1, and sys.Structure.Td
contain information about each of these parameters, respectively.

Each of these parameter entries in sys.Structure contains the
following fields:

• Value— Parameter values. For example, sys.Structure.Kp.Value
contains the initial or estimated values of the Kp parameter.

NaN represents unknown parameter values.

1-438

idproc

For SISO models, each parameter value property such as sys.Kp,
sys.Tp1, sys.Tz, and the others is an alias to the corresponding
Value entry in the Structure property of sys. For example, sys.Tp3
is an alias to the value of the property sys.Structure.Tp3.Value.

For MIMO models, sys.Kp{i,j} is an alias to
sys.Structure(i,j).Kp.Value, and similarly for the
other identifiable coefficient values.

• Minimum — Minimum value that the parameter can assume
during estimation. For example, sys.Structure.Kp.Minimum = 1
constrains the proportional gain to values greater than or equal to 1.

• Maximum— Maximum value that the parameter can assume during
estimation.

• Free — Logical value specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, to fix the dead time to 5:

sys.Td = 5;
sys.Structure.Td.Free = false;

• Scale — Scale of the parameter’s value. Scale is not used in
estimation.

• Info— Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

Structure also includes a field Integration that stores a logical array
indicating whether each corresponding process model has an integrator.
sys.Structure.Integration is an alias to sys.Integration.

For a MIMO model with Ny outputs and Nu input, Structure is an
Ny-by-Nu array. The element Structure(i,j) contains information
corresponding to the process model for the (i,j) input-output pair.

1-439

idproc

NoiseVariance

The variance (covariance matrix) of the model innovations e.

An identified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as procest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of outputs
in the system.

Report

Information about the estimation process.

Report contains the following fields:

• InitialCondition — Whether estimation estimated initial
conditions or fixed them at zero.

• Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

• Parameters — Estimated values of model parameters and input
offset, and their covariances.

• OptionsUsed — Options used during estimation (see
procestOptions).

• RandState— Random number stream state at start of estimation.

• Status— Whether model was obtained by construction, estimated,
or modified after estimation.

• Method — Name of estimation method used.

• DataUsed — Attributes of data used for estimation, such as name
and sampling time.

• Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion.

1-440

idproc

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in the time unit stored
in the TimeUnit property.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where
each entry is a numerical value representing the input delay for the
corresponding input channel. You can also set InputDelay to a scalar
value to apply the same delay to all channels.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idproc, OutputDelay is fixed to zero.

Ts

Sampling time. For idproc, Ts is fixed to zero because all idproc
models are continuous time.

TimeUnit

String representing the unit of the time variable. For continuous-time
models, this property represents any time delays in the model. For
discrete-time models, it represents the sampling time Ts. Use any of
the following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

1-441

idproc

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to
{'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

1-442

idproc

Input channel units. Use InputUnit to keep track of input signal units.
For a single-input model, set InputUnit to a string. For a multi-input
model, set InputUnit to a cell array of strings. InputUnit has no effect
on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group
by name. Specify input groups as a structure. In this structure, field
names are the group names, and field values are the input channels
belonging to each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

1-443

idproc

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. For a single-output model, set OutputUnit to a string. For
a multi-output model, set OutputUnit to a cell array of strings.
OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure. In this structure, field
names are the group names, and field values are the output channels
belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

1-444

idproc

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

See Also idtf | procest | idss | tfest | ssest | pem

1-445

idresamp

Purpose Resample time-domain data by decimation or interpolation

Syntax datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)

Description datar = idresamp(data,R) resamples data on a new sample interval
R and stores the resampled data as datar.

datar = idresamp(data,R,order,tol) filters the data by applying a
filter of specified order before interpolation and decimation. Replaces R
by a rational approximation that is accurate to a tolerance tol.

[datar,res_fact] = idresamp(data,R,order,tol) returns
res_fact, which corresponds to the value of R approximated by a
rational expression.

Input
Arguments

data
Name of time-domain iddata object or a matrix of data. Can be
input-output or time-series data.

Data must be sampled at equal time intervals.

R
Resampling factor, such that R>1 results in decimation and R<1
results in interpolation.

Any positive number you specify is replaced by the rational
approximation, Q/P.

order
Order of the filters applied before interpolation and decimation.

Default: 8

tol
Tolerance of the rational approximation for the resampling factor
R.

1-446

idresamp

Smaller tolerance might result in larger P and Q values, which
produces more accurate answers at the expense of slower
computation.

Default: 0.1

Output
Arguments

datar
Name of the resampled data variable. datar class matches the
data class, as specified.

res_fact
Rational approximation for the specified resampling factor R and
tolerance tol.

Any positive number you specify is replaced by the rational
approximation, Q/P, where the data is interpolated by a factor P
and then decimated by a factor Q.

See Also resample

1-447

idss

Purpose State-space model with identifiable parameters

Syntax sys = idss(A,B,C,D)
sys = idss(A,B,C,D,K)
sys = idss(A,B,C,D,K,x0)
sys = idss(A,B,C,D,K,x0,Ts)
sys = idss(___ ,Name,Value)

sys = idss(sys0)
sys = idss(sys0,'split')

Description sys = idss(A,B,C,D) creates a state-space model with identifiable
parameters. A, B, C, and D are the initial values of the state-space
matrices. By default, sys is discrete-time model with unspecified
sampling time and no state disturbance element.

sys = idss(A,B,C,D,K) creates a state-space model with a disturbance
element given by the matrix K.

sys = idss(A,B,C,D,K,x0) creates a state-space model with initial
state values given by the vector x0.

sys = idss(A,B,C,D,K,x0,Ts) creates a state-space model with
sampling time Ts. Use Ts = 0 to create a continuous-time model.

sys = idss(___ ,Name,Value) creates a state-space model using
additional options specified by one or more Name,Value pair
arguments.

sys = idss(sys0) converts any dynamic system model, sys0, to idss
model form.

sys = idss(sys0,'split') converts sys0 to idss model form, and
treats the last Ny input channels of sys0 as noise channels in the

1-448

idss

returned model. sys0 must be a numeric (non-identified) tf, zpk, or ss
model object. Also, sys0 must have at least as many inputs as outputs.

Object
Description

An idssmodel represents a system as a continuous-time or discrete-time
state-space model with identifiable (estimable) coefficients.

A state-space model of a system with input vector u, output vector y,
and disturbance e takes the following form in continuous time:

dx t

dt
Ax t Bu t Ke t

y t Cx t Du t e t

 .

In discrete time, the state-space model takes the form:

x k Ax k Bu k Ke k

y k Cx k Du k e k

1

.

For idss models, the elements of the state-space matrices A, B, C, and
D can be estimable parameters. The elements of the state disturbance
K can also be estimable parameters. The idss model stores the values
of these matrix elements in the a, b, c, d, and k properties of the model.

There are three ways to obtain an idss model.

• Estimate the idss model based on input-output measurements of a
system, using n4sid or ssest. These estimation commands estimate
the values of the estimable elements of the state-space matrices. The
estimated values are stored in the a, b, c, d, and k properties of the
resulting idss model. The Report property of the resulting model
stores information about the estimation, such as handling of initial
state values and options used in estimation.

When you obtain an idss model by estimation, you can extract
estimated coefficients and their uncertainties from the model using
commands such as idssdata, getpar, or getcov.

• Create an idss model using the idss command.

1-449

idss

You can create an idssmodel to configure an initial parameterization
for estimation of a state-space model to fit measured response data.
When you do so, you can specify constraints on one or more of the
state-space matrix elements. For example, you can fix the values
of some elements, or specify minimum or maximum values for the
free elements. You can then use the configured model as an input
argument to an estimation command (n4sid or ssest) to estimate
parameter values with those constraints.

• Convert an existing dynamic system model to an idss model using
the idss command.

To configure an idss model in a desired form, such as a companion or
modal form, use state transformation commands such as canon and
ss2ss.

Examples Create State-Space Model with Identifiable Parameters

Create a 4th-order SISO state-space model with identifiable parameters.
Initialize the initial state values to 0.1 for all entries. Set the sampling
time to 0.1 s as well.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];
Ts = 0.1;

sys = idss(A,B,C,D,K,x0,Ts);

sys is a 4th-order, SISO idss model. The number of states and
input-output dimensions are determined by the dimensions of the
state-space matrices. By default, all entries in the matrices A, B, C, D,
and K are identifiable parameters.

You can use sys to specify an initial parametrization for state-space
model estimation with ssest or n4sid.

1-450

idss

Specify Additional Attributes of State-Space Model

Create a 4th-order SISO state-space model with identifiable parameters.
Name the input and output channels of the model, and specify minutes
for the model time units.

You can use Name,Value pair arguments to specify additional model
properties on model creation.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;

sys = idss(A,B,C,D,'InputName','Drive','TimeUnit','minutes');

To change or specify most attributes of an existing model, you can use
dot notation. For example:

sys.OutputName = 'Torque';

Configure Identifiable Parameters of State-Space Model

Configure an idssmodel so that it has no state disturbance element and
only the non-zero entries of the A matrix are estimable. Additionally, fix
the values of the B matrix.

You can configure individual parameters of an idss model to specify
constraints for state-space model estimation with ssest or n4sid.

Create an idss model.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 0 1 0];
D = 0;
K = zeros(4,1);
x0 = [0.1,0.1,0.1,0.1];

sys = idss(A,B,C,D,K,x0,0);

1-451

idss

Setting all entries of K = 0 creates an idss model with no state
disturbance element.

Use the Structure property of the model to fix the values of some of
the parameters.

sys.Structure.a.Free = (A~=0);
sys.Structure.b.Free = false;
sys.Structure.k.Free = false;

The entries in sys.Structure.a.Free determine whether the
corresponding entries in sys.a are free (identifiable) or fixed. The
first line sets sys.Structure.a.Free to a logical matrix that is true
wherever A is non-zero, and false everywhere else. Doing so fixes the
value of the zero entries in sys.a.

The remaining lines fix all the values in sys.b and sys.k to the values
you specified when you created the model.

Array of State-Space Models

Create an array of state-space models.

There are several ways to create arrays of state-space models:

• Direct array construction using n-dimensional state-space arrays

• Array-building by indexed assignment

• Array-building using the stack command

• Sampling an identified model using the rsample command

Create an array by providing n-dimensional arrays as an input
argument to idss, instead of 2-dimensional matrices.

A = rand(2,2,3,4);
sysarr = idss(A,[2;1],[1 1],0);

When you provide a multi-dimensional array to idss in place of
one of the state-space matrices, the first two dimensions specify the
numbers of states, inputs, or outputs of each model in the array. The

1-452

idss

remaining dimensions specify the dimensions of the array itself. A is
a 2-by-2-by-3-by-4 array. Therefore, sysarr is a 3-by-4 array of idss
models. Each model in sysarr has two states, specified by the first
two dimensions of A. Further, each model in sysarr has the same B,
C, and D values.

Create an array by indexed assignment.

sysarr = idss(zeros(1,1,2));
sysarr(:,:,1) = idss([4 -3;-2 0],[2;1],[1 1],0);
sysarr(:,:,2) = idss(rand(2),rand(2,1),rand(1,2),1);

The first command preallocates the array. The first two dimensions of
the array are the I/O dimensions of each model in the array. Therefore,
sysarr is a 2-element vector of SISO models.

The remaining commands assign an idss model to each position in
sysarr. Each model in an array must have the same I/O dimensions.

Add another model to sysarr using stack.

stack is an alternative to building an array by indexing.

sysarr = stack(1,sysarr,idss([1 -2;-4 9],[0;-1],[1 1],0));

This command adds another idss model along the first array dimension
of sysarr. sysarr is now a 3-by-1 array of SISO idss models

Input
Arguments

A,B,C,D

Initial values of the state-space matrices.

For a system with Ny outputs, Nu inputs, and Nx states, specify initial
values of the state-space matrix elements as follows:

• A — Nx-by-Nx matrix.

• B — Nx-by-Nu matrix.

• C — Ny-by-Nx matrix.

1-453

idss

• D — Ny-by-Nu matrix.

Use NaN for any matrix element whose initial value is not known.

K

Initial value of the state disturbance matrix.

Specify K as an Nx-by-Ny matrix.

Use NaN for any matrix element whose initial value is not known.

Default: Nx-by-Ny zero matrix.

x0

Initial state values.

Specify the initial condition as a column vector of Nx values.

Default: Nx column vector of zeros.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.
To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

Default: –1 (discrete-time model with unspecified sampling time)

sys0

Dynamic system.

Any dynamic system to convert to an idss model:

• When sys0 is an identified model, its estimated parameter covariance
is lost during conversion. If you want to translate the estimated
parameter covariance during the conversion, use translatecov.

1-454

idss

• When sys0 is a numeric (non-identified) model, the state-space data
of sys0 define the A, B, C, and D matrices of the converted model.
The disturbance matrix K is fixed to zero. The NoiseVariance value
defaults to eye(Ny), where Ny is the number of outputs of sys.

For the syntax sys = idss(sys0,'split'), sys0 must be a numeric
(non-identified) tf, zpk, or ss model object. Also, sys0 must
have at least as many inputs as outputs. Finally, the subsystem
sys0(:,Ny+1:Ny+Nu) must contain a non-zero feedthrough term (the
subsystem must be biproper).

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value arguments to specify additional properties
of idss models during model creation. For example,
idss(A,B,C,D,'InputName','Voltage') creates an idss model with
the InputName property set to Voltage.

Properties Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

idss objects properties include:

a,b,c,d

Values of state-space matrices.

• a — State matrix A, an Nx-by-Nx matrix.

• b — Nx-by-Nu matrix.

• c — Ny-by-Nx matrix.

1-455

idss

• d — Ny-by-Nu matrix.

If you create an idssmodel sys using the idss command, sys.a, sys.b,
sys.c, and sys.d contain the initial values of the state-space matrices
that you specify with the A,B,C,D input arguments.

If you obtain an idss model sys by identification using ssest or n4sid,
then sys.a, sys.b, sys.c, and sys.d contain the estimated values of
the matrix elements.

For an idss model sys, each property sys.a, sys.b, sys.c, and sys.d
is an alias to the corresponding Value entry in the Structure property
of sys. For example, sys.a is an alias to the value of the property
sys.Structure.a.Value.

k

Value of state disturbance matrix K, an Nx-by-Ny matrix.

If you create an idss model sys using the idss command, sys.k
contains the initial values of the state-space matrices that you specify
with the K input argument.

If you obtain an idss model sys by identification using ssest or n4sid,
then sys.k contains the estimated values of the matrix elements.

For an idss model sys, sys.k is an alias to the value of the property
sys.Structure.k.Value.

Default: Nx-by-Ny zero matrix.

StateName

State names. For first-order models, set StateName to a string. For
models with two or more states, set StateName to a cell array of strings
. Use an empty string '' for unnamed states.

Default: Empty string '' for all states

StateUnit

1-456

idss

State units. Use StateUnit to keep track of the units each state is
expressed in. For first-order models, set StateUnit to a string. For
models with two or more states, set StateUnit to a cell array of strings.
StateUnit has no effect on system behavior.

Default: Empty string '' for all states

Structure

Information about the estimable parameters of the idss model.
Structure.a, Structure.b, Structure.c, Structure.d, and
Structure.k contain information about the A, B, C, D, and K matrices,
respectively. Each contains the following fields:

• Value— Parameter values. For example, sys.Structure.a.Value
contains the initial or estimated values of the A matrix.

NaN represents unknown parameter values.

Each property sys.a, sys.b, sys.c, and sys.d is an alias to
the corresponding Value entry in the Structure property of
sys. For example, sys.a is an alias to the value of the property
sys.Structure.a.Value

• Minimum— Minimum value that the parameter can assume during
estimation. For example, sys.Structure.k.Minimum = 0 constrains
all entries in the K matrix to be greater than or equal to zero.

• Maximum— Maximum value that the parameter can assume during
estimation.

• Free — Boolean specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, if A is a 3-by-3 matrix, sys.Structure.a.Free = eyes(3)
fixes all of the off-diagonal entries in A, to the values specified in
sys.Structure.a.Value. In this case, only the diagonal entries in A
are estimable.

• Scale — Scale of the parameter’s value. Scale is not used in
estimation.

1-457

idss

• Info— Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

NoiseVariance

The variance (covariance matrix) of the model innovations e.

An identified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as ssest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of outputs
in the system.

Report

Information about the estimation process.

Report contains the following fields:

• N4Weight — Subspace algorithm option value used by n4sid
estimator (see n4sidOptions).

• N4Horizon — Forward and backward prediction horizons used by
n4sid (see n4sidOptions).

• InitialState — Whether initial state values were estimated or
fixed.

• Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error.

• Parameters — Estimated values of model parameters and initial
states, and their covariances.

• OptionsUsed— Options used during estimation (see ssestOptions
or n4sidOptions).

• RandState— Random number stream state at start of estimation.

1-458

idss

• Status— Whether model was obtained by construction, estimated,
or modified after estimation.

• Method — Name of estimation method used.

• DataUsed — Attributes of data used for estimation, such as name
and sampling time.

• Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion. Available only when the model is
estimated using ssest or pem.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idss, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period
expressed in the unit specified by the TimeUnit property of the model.

1-459

idss

To denote a discrete-time model with unspecified sampling time, set
Ts = -1.

Changing this property does not discretize or resample the model.
Use c2d and d2c to convert between continuous- and discrete-time
representations. Use d2d to change the sampling time of a discrete-time
system.

Default: –1 (discrete-time model with unspecified sampling time)

TimeUnit

String representing the unit of the time variable. For continuous-time
models, this property represents any time delays in the model. For
discrete-time models, it represents the sampling time Ts. Use any of
the following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

1-460

idss

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to
{'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
For a single-input model, set InputUnit to a string. For a multi-input
model, set InputUnit to a cell array of strings. InputUnit has no effect
on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group
by name. Specify input groups as a structure. In this structure, field
names are the group names, and field values are the input channels
belonging to each group. For example:

1-461

idss

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

1-462

idss

Output channel units. Use OutputUnit to keep track of output signal
units. For a single-output model, set OutputUnit to a string. For
a multi-output model, set OutputUnit to a cell array of strings.
OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure. In this structure, field
names are the group names, and field values are the output channels
belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

1-463

idss

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

See Also idssdata | ssest | ssestOptions | n4sid | pem | idgrey |
idpoly | idproc | idtf | translatecov

Concepts • “Dynamic System Models”

1-464

idssdata

Purpose State-space data of identified system

Syntax [A,B,C,D,K] = idssdata(sys)
[A,B,C,D,K,x0] = idssdata(sys)
[A,B,C,D,K,x0,dA,dB,dC,dD,dK,dx0] = idssdata(sys)
[A,B,C,D,K, ___] = idssdata(sys,j1,...,jN)
[A,B,C,D,K, ___] = idssdata(sys,'cell')

Description [A,B,C,D,K] = idssdata(sys) returns the A,B,C,D and K matrices of
the identified state-space model sys.

[A,B,C,D,K,x0] = idssdata(sys) returns the initial state values, x0.

[A,B,C,D,K,x0,dA,dB,dC,dD,dK,dx0] = idssdata(sys) returns the
uncertainties in the system matrices for sys.

[A,B,C,D,K, ___] = idssdata(sys,j1,...,jN) returns data for the
j1, ..., jn entries in the model array sys.

[A,B,C,D,K, ___] = idssdata(sys,'cell') returns data for all the
entries in the model array sys as separate cells in cell arrays.

Input
Arguments

sys

Identified model.

If sys is not an identified state-space model (idssor idgrey), then it is
first converted to an idss model.

sys may be an array of identified models.

j1,...,jN

Integer indices of N entries in the array sys of identified systems.

Output
Arguments

A,B,C,D,K

State-space matrices that represent sys as:

1-465

idssdata

x k Ax k Bu k Ke k x x
y k Cx k Du k e k
[] [] [] []; [] ;
[] [] [] [];

1 0 0

If sys is an array of identified models, then A,B,C,D,K are
multi-dimension arrays. To access the state-space matrix, say A, for the
k-th entry of sys, use A(:,:,k).

x0

Initial state.

If sys is an idss or idgrey model, then x0 is the value obtained during
estimation. It is also stored using the Report.Parameters property
of sys.

For other model types, x0 is zero.

If sys is an array of identified models, then x0 contains a column for
each entry in sys.

dA,dB,dC,dD,dK

Uncertainties associated with the state-space matrices A,B,C,D,K.

The uncertainty matrices represents 1 standard deviation of
uncertainty.

If sys is an array of identified models, then dA,dB,dC,dD,dK are
multi-dimension arrays. To access the state-space matrix, say A, for the
k-th entry of sys, use A(:,:,k).

dx0

Uncertainty associated with the initial state.

dx0 represents 1 standard deviation of uncertainty.

If sys is an array of identified models, then dx0 contains a column for
each entry in sys.

1-466

idssdata

Examples Obtain Identified State-Space Matrices

Obtain the identified state-space matrices for a model estimated from
data.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate
of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain identified state-space matrices of sys.

[A,B,C,D,K] = idssdata(sys);

A,B,C,D and K represent the state-space matrices of the identified model
sys.

Obtain Initial State of Identified Model

Obtain the initial state associated with an identified model.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate
of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain the initial state associated with sys.

[A,B,C,D,K,x0] = idssdata(sys);

1-467

idssdata

A,B,C,D and K represent the state-space matrices of the identified model
sys.

x0 is the initial state identified for sys.

Obtain Uncertainty Data of State-Space Matrices of Identified
Model

Obtain the uncertainty matrices of the state-space matrices of an
identified model.

Identify a model using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys = n4sid(data,4,'InputDelay',2);

data is an iddata object representing data sampled at a sampling rate
of 0.04 seconds.

sys is an idss model representing the identified system.

Obtain the uncertainty matrices associated with the state-space
matrices of sys.

[A,B,C,D,K,x0,dA,dB,dC,dD,dx0] = idssdata(sys);

dA,dB,dC,dD and dK represent the uncertainty associated with the
state-space matrices of the identified model sys.

dx0 represents the uncertainty associated with the estimated initial
state.

Obtain State-Space Matrices for Multiple Identified Models

Obtain the state-space matrices for multiple models from an array of
identified models.

Identify multiple models using data.

load icEngine.mat
data = iddata(y,u,0.04);

1-468

idssdata

sys2 = n4sid(data,2,'InputDelay',2);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys2,sys3,sys4);

data is an iddata object representing data sampled at a sampling rate
of 0.04 seconds.

sys is an array of idss models. The first entry of sys is a second order
identified system. The second and third entries of sys are third and
fourth order identified systems, respectively.

Obtain the state-space matrices for the first and third entries of sys.

[A,B,C,D,K,x0] = idssdata(sys,1,3);

Obtain State-Space Matrices for Identified Model as Cell
Array

Obtain the state-space matrices of an array of identified models in cell
arrays.

Identify multiple models using data.

load icEngine.mat
data = iddata(y,u,0.04);
sys3 = n4sid(data,3,'InputDelay',2);
sys4 = n4sid(data,4,'InputDelay',2);
sys = stack(1,sys3,sys4);

data is an iddata object representing data sampled at a sampling rate
of 0.04 seconds.

sys is an array of idss models. The first entry of sys is a third order
identified system and the second entry is a fourth order identified
system.

Obtain the state-space matrices of sys in cell arrays.

[A,B,C,D,K,x0] = idssdata(sys,'cell');

1-469

idssdata

A,B,C,D and K are cell arrays containing the state-space matrices of the
individual entries of the identified model arraysys.

x0 is a cell array containing the estimated initial state of the individual
entries of the identified model array sys.

See Also ssdata | idss | tfdata | zpkdata | polydata

1-470

idtf

Purpose Transfer function model with identifiable parameters

Syntax sys = idtf(num,den)
sys = idtf(num,den,Ts)
sys = idtf(___ ,Name,Value)

sys = idtf(sys0)

Description sys = idtf(num,den) creates a continuous-time transfer function with
identifiable parameters (an idtf model). num specifies the current
values of the transfer function numerator coefficients. den specifies the
current values of the transfer function denominator coefficients.

sys = idtf(num,den,Ts) creates a discrete-time transfer function
with identifiable parameters. Ts is the sampling time.

sys = idtf(___ ,Name,Value) creates a transfer function with
properties specified by one or more Name,Value pair arguments.

sys = idtf(sys0) converts any dynamic system model, sys0, to idtf
model form.

Object
Description

An idtf model represents a system as a continuous-time or
discrete-time transfer function with identifiable (estimable) coefficients.

A SISO transfer function is a ratio of polynomials with an exponential
term. In continuous time,

G s e
b s b s b

s a s a
s n

n
n

n

m
m

m

 1
1

0

1
1

0

...

...
.

In discrete time,

1-471

idtf

G z z
b z b z b

z a z a
k n

n
n

n

m
m

m

1 1

1
0

1
1

0

...

...
.

In discrete time, z–k represents a time delay of kTs, where Ts is the
sampling time.

For idtf models, the denominator coefficients a0,...,am–1 and the
numerator coefficients b0,...,bn can be estimable parameters. (The
leading denominator coefficient is always fixed to 1.) The time delay
τ (or kin discrete time) can also be an estimable parameter. The idtf
model stores the polynomial coefficients a0,...,am–1 and b0,...,bn in the den
and num properties of the model, respectively. The time delay τ or k is
stored in the ioDelay property of the model.

A MIMO transfer function contains a SISO transfer function
corresponding to each input-output pair in the system. For idtfmodels,
the polynomial coefficients and transport delays of each input-output
pair are independently estimable parameters.

There are three ways to obtain an idtf model.

• Estimate the idtf model based on input-output measurements of a
system, using tfest. The tfest command estimates the values of the
transfer function coefficients and transport delays. The estimated
values are stored in the num, den, and ioDelay properties of the
resulting idtf model. The Report property of the resulting model
stores information about the estimation, such as handling of initial
conditions and options used in estimation.

When you obtain an idtf model by estimation, you can extract
estimated coefficients and their uncertainties from the model. To do
so, use commands such as tfdata, getpar, or getcov.

• Create an idtf model using the idtf command.

You can create an idtfmodel to configure an initial parameterization
for estimation of a transfer function to fit measured response data.
When you do so, you can specify constraints on such values as the
numerator and denominator coefficients and transport delays. For
example, you can fix the values of some parameters, or specify

1-472

idtf

minimum or maximum values for the free parameters. You can then
use the configured model as an input argument to tfest to estimate
parameter values with those constraints.

• Convert an existing dynamic system model to an idtf model using
the idtf command.

Note Unlike idss and idpoly, idtf uses a trivial noise model and
does not parameterize the noise.

So, H = 1 in y Gu He .

Examples Continuous-Time Transfer Function

Specify a continuous-time, single-input, single-output (SISO) transfer
function with estimable parameters. The initial values of the transfer
function are:

G s
s

s s
()

4

20 52

num = [1 4];
den = [1 20 5];
G = idtf(num,den);

G is an idtf model. num and den specify the initial values of the
numerator and denominator polynomial coefficients in descending
powers of s. The numerator coefficients having initial values 1 and
4 are estimable parameters. The denominator coefficient having
initial values 20 and 5 are also estimable parameters. The leading
denominator coefficient is always fixed to 1.

You can use G to specify an initial parametrization for estimation with
tfest.

1-473

idtf

Transfer Function with Known Input Delay and Specified
Attributes

Specify a continuous-time, SISO transfer function with known input
delay. The transfer function initial values are given by:

G s e
s

s() .

5 8 5
5

Label the input of the transfer function with the name 'Voltage' and
specify the input units as volt.

Use Name,Value input pairs to specify the delay, input name, and input
unit.

num = 5;
den = [1 5];
input_delay = 5.8;
input_name = 'Voltage';
input_unit = 'volt';
G = idtf(num,den,'InputDelay',input_delay,...

'InputName',input_name,'InputUnit',input_unit);

G is an idtf model. You can use G to specify an initial parametrization
for estimation with tfest. If you do so, model properties such as
InputDelay, InputName, and InputUnit are applied to the estimated
model. The estimation process treats InputDelay as a fixed value. If
you want to estimate the delay and specify an initial value of 5.8 s,
use the ioDelay property instead.

Discrete-Time Transfer Function

Specify a discrete-time SISO transfer function with estimable
parameters. The initial values of the transfer function are:

H z
z
z

()
.
.

0 1
0 8

Specify the sampling time as 0.2 seconds.

1-474

idtf

num = [1 -0.1];
den = [1 0.8];
Ts = 0.2
H = idtf(num,den,Ts);

num and den are the initial values of the numerator and denominator
polynomial coefficients. For discrete-time systems, specify the
coefficients in ascending powers of z–1.

Ts specifies the sampling time for the transfer function as 0.2 seconds.

H is an idtf model. The numerator and denominator coefficients are
estimable parameters (except for the leading denominator coefficient,
which is fixed to 1).

MIMO Discrete-Time Transfer Function

Specify a discrete-time, two-input, two-output transfer function. The
initial values of the MIMO transfer function are:

H z z
z

z
z

z z

() . .

. .

1
0 2 0 7

2
0 3

3
0 3

Specify the sampling time as 0.2 seconds.

nums = {1,[1,0];[-1,2],3};
dens = {[1,0.2],[1,0.7];[1,-0.3],[1,0.3]};
Ts = 0.2
H = idtf(nums,dens,Ts);

nums and dens specify the initial values of the coefficients in cell
arrays. Each entry in the cell array corresponds to the numerator or
denominator of the transfer function of one input-output pair. For
example, the first row of nums is {1,[1,0]}. This cell array specifies
the numerators across the first row of transfer functions in H. Likewise,
the first row of dens, {[1,0.2],[1,0.7]}, specifies the denominators
across the first row of H.

1-475

idtf

Ts specifies the sampling time for the transfer function as 0.2 seconds.

H is an idtf model. All of the polynomial coefficients are estimable
parameters, except for the leading coefficient of each denominator
polynomial. These coefficients are always fixed to 1.

Specify q^-1 as Transfer Function Variable

Specify the following discrete-time transfer function in terms of q^-1:

H q
q

q q
()

.

. .

1

1

1 2
1 4

1 1 3

Specify the sampling time as 0.1 seconds.

num = [1 .4];
den = [1 .1 -.3];
Ts = 0.1;
convention_variable = 'q^-1';
H = idtf(num,den,Ts,'Variable',convention_variable);

Use a Name,Value pair argument to specify the variable q^-1.

num and den are the numerator and denominator polynomial coefficients
in ascending powers of q–1.

Ts specifies the sampling time for the transfer function as 0.1 seconds.

H is an idtf model.

Gain Matrix Transfer Function

Specify a transfer function with estimable coefficients whose initial
value is the static gain matrix:

H s()

1 0 1
1 1 0
3 0 2

M = [1 0 1; 1 1 0; 3 0 2];

1-476

idtf

H = idtf(M);

H is an idtf model that describes a three input (Nu=3), three output
(Ny=3) transfer function. Each input/output channel is an estimable
static gain. The initial values of the gains are given by the values in
the matrix M.

Convert Identifiable State-Space Model to Identifiable
Transfer Function

Convert a state-space model with identifiable parameters to a transfer
function with identifiable parameters.

Convert the following identifiable state-space model to an identifiable
transfer function.

x t x t u t e t

y t

()
.

.
() ()

.

.
()

(

0 2 0
0 0 3

2
4

1
2

)) () 1 1 x t

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0; K = [.1; .2];
sys0 = idss(A,B,C,D,K,'NoiseVariance',0.1);
sys = idtf(sys0);

A,B,C,D and K are matrices that specify sys0, an identifiable state-space
model with a noise variance of 0.1.

sys = idtf(sys0) creates an idtf model, sys.

Obtain a Transfer Function by Estimation

Identify a transfer function containing a specified number of poles for
given data.

Load time domain system response data and use it to estimate a
transfer function for the system.

load iddata1 z1;
np = 2;

1-477

idtf

sys = tfest(z1,np);

z1 is an iddata object that contains time-domain, input-output data.

np specifies the number of poles in the estimated transfer function.

sys is an idtf model containing the estimated transfer function.

To see the numerator and denominator coefficients of the resulting
estimated model sys, enter:

sys.num
sys.den

Obtain a Transfer Function with Prior Knowledge of Model
Structure and Constraints

Identify a transfer function for given data by providing its expected
structure and coefficient constraints

Load time domain data.

load iddata1 z1;
z1.y = cumsum(z1.y);

cumsum integrates the output data of z1. The estimated transfer
function should therefore contain an integrator.

Create a transfer function model with the expected structure.

init_sys = idtf([100 1500],[1 10 10 0]);

int_sys is an idtf model with three poles and one zero. The
denominator coefficient for the s^0 term is zero. Therefore, int_sys
contains an integrator.

Specify constraints on the numerator and denominator coefficients of
the transfer function model. To do so, configure fields in the Structure
property:

init_sys.Structure.num.Minimum = eps;

1-478

idtf

init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;

The constraints specify that the numerator and denominator coefficients
are nonnegative. Additionally, the last element of the denominator
coefficients (associated with the s^0 term) is not an estimable
parameter. This constraint forces one of the estimated poles to be at
s = 0.

Create an estimation option set that specifies using the
Levenberg–Marquardt search method.

opt = tfestOptions('SearchMethod', 'lm');

Estimate a transfer function for z1 using init_sys and the estimation
option set.

sys = tfest(z1,init_sys,opt);

tfest uses the coefficients of init_sys to initialize the estimation of
sys. Additionally, the estimation is constrained by the constraints
you specify in the Structure property of init_sys. The resulting
idtf model sys contains the parameter values that result from the
estimation.

Array of Transfer Function Models

Create an array of transfer function models with identifiable
coefficients. Each transfer function in the array is of the form:

H s
a

s a

.

The initial value of the coefficient a varies across the array, from 0.1 to
1.0, in increments of 0.1.

H = idtf(zeros(1,1,10));
for k = 1:10

num = k/10;
den = [1 k/10];

1-479

idtf

H(:,:,k) = idtf(num,den);
end

The first command preallocates a one-dimensional, 10-element array, H,
and fills it with empty idtf models.

The first two dimensions of a model array are the output and input
dimensions. The remaining dimensions are the array dimensions.
H(:,:,k) represents the kth model in the array. Thus, the for loop
replaces the kth entry in the array with a transfer function whose
coefficients are initialized with a = k/10.

Input
Arguments

num

Initial values of transfer function numerator coefficients.

For SISO transfer functions, specify the initial values of the numerator
coefficients num as a row vector. Specify the coefficients in order of:

• Descending powers of s or p (for continuous-time transfer functions)

• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

Use NaN for any coefficient whose initial value is not known.

For MIMO transfer functions with Ny outputs and Nu inputs, num is a
Ny-by-Nu cell array of numerator coefficients for each input/output pair.

den

Initial values of transfer function denominator coefficients.

For SISO transfer functions, specify the initial values of the
denominator coefficients den as a row vector. Specify the coefficients
in order of:

• Descending powers of s or p (for continuous-time transfer functions)

• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

The leading coefficient in den must be 1. Use NaN for any coefficient
whose initial value is not known.

1-480

idtf

For MIMO transfer functions with Ny outputs and Nu inputs, den is a
Ny-by-Nu cell array of denominator coefficients for each input/output
pair.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period. This
value is expressed in the unit specified by the TimeUnit property of
the model. To denote a discrete-time model with unspecified sampling
time, set Ts = -1.

Changing this property does not discretize or resample the model.
Use c2d and d2c to convert between continuous- and discrete-time
representations. Use d2d to change the sampling time of a discrete-time
system.

Default: 0 (continuous time)

sys0

Dynamic system.

Any dynamic system to convert to an idtf model.

When sys0 is an identified model, its estimated parameter covariance
is lost during conversion. If you want to translate the estimated
parameter covariance during the conversion, use translatecov.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Use Name,Value arguments to specify additional properties
of idtf models during model creation. For example,
idtf(num,den,'InputName','Voltage') creates an idtf model with
the InputName property set to Voltage.

1-481

idtf

Properties idtf object properties include:

num

Values of transfer function numerator coefficients.

If you create an idtf model sys using the idtf command, sys.num
contains the initial values of numerator coefficients that you specify
with the num input argument.

If you obtain an idtf model by identification using tfest, then sys.num
contains the estimated values of the numerator coefficients.

For an idtf model sys, the property sys.num is an alias for the value of
the property sys.Structure.num.Value.

For SISO transfer functions, the values of the numerator coefficients
are stored as a row vector in order of:

• Descending powers of s or p (for continuous-time transfer functions)

• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

Any coefficient whose initial value is not known is stored as NaN.

For MIMO transfer functions with Ny outputs and Nu inputs, num is a
Ny-by-Nu cell array of numerator coefficients for each input/output pair.

den

Values of transfer function denominator coefficients.

If you create an idtf model sys using the idtf command, sys.den
contains the initial values of denominator coefficients that you specify
with the den input argument.

If you obtain an idtf model sys by identification using tfest, then
sys.den contains the estimated values of the denominator coefficients.

For an idtf model sys, the property sys.den is an alias for the value of
the property sys.Structure.den.Value.

For SISO transfer functions, the values of the denominator coefficients
are stored as a row vector in order of:

1-482

idtf

• Descending powers of s or p (for continuous-time transfer functions)

• Ascending powers of z–1 or q–1 (for discrete-time transfer functions)

The leading coefficient in den is fixed to 1. Any coefficient whose initial
value is not known is stored as NaN.

For MIMO transfer functions with Ny outputs and Nu inputs, den is a
Ny-by-Nu cell array of denominator coefficients for each input/output
pair.

Variable

String specifying the transfer function display variable. Variable
requires one of the following values:

• 's' — Default for continuous-time models

• 'p' — Equivalent to 's'

• 'z^-1' — Default for discrete-time models

• 'q^-1' — Equivalent to 'z^-1'

The value of Variable is reflected in the display, and also affects the
interpretation of the num and den coefficient vectors for discrete-time
models. For Variable = 'z^-1' or 'q^-1', the coefficient vectors are
ordered as ascending powers of the variable.

ioDelay

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

If you create an idtf model sys using the idtf command, sys.ioDelay
contains the initial values of the transport delay that you specify with a
Name,Value argument pair.

If you obtain an idtf model sys by identification using tfest, then
sys.ioDelay contains the estimated values of the transport delay.

For an idtf model sys, the property sys.ioDelay is an alias for the
value of the property sys.Structure.ioDelay.Value.

1-483

idtf

For continuous-time systems, transport delays are expressed in the
time unit stored in the TimeUnit property. For discrete-time systems,
specify transport are expressed as integers denoting delay of a multiple
of the sampling period Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay
as a Ny-by-Nu array. Each entry of this array is a numerical value
representing the transport delay for the corresponding input/output
pair. You can set ioDelay to a scalar value to apply the same delay
to all input/output pairs.

Default: 0 for all input/output pairs

Structure

Information about the estimable parameters of the idtf model.
Structure.num, Structure.den, and Structure.ioDelay contain
information about the numerator coefficients, denominator coefficients,
and transport delay, respectively. Each contains the following fields:

• Value—Parameter values. For example, sys.Structure.num.Value
contains the initial or estimated values of the numerator coefficients.

NaN represents unknown parameter values. For
denominators, the value of the leading coefficient, specified
by sys.Structure.den.Value(1) is fixed to 1.

For SISO models, sys.num, sys.den, and sys.ioDelay are aliases
for sys.Structure.num.Value, sys.Structure.den.Value, and
sys.Structure.ioDelay.Value, respectively.

For MIMO models, sys.num{i,j} is an alias for
sys.Structure(i,j).num.Value, and sys.den{i,j} is an alias for
sys.Structure(i,j).den.Value. Additionally, sys.ioDelay(i,j)
is an alias for sys.Structure(i,j).ioDelay.Value

• Minimum— Minimum value that the parameter can assume during
estimation. For example, sys.Structure.ioDelay.Minimum = 0.1
constrains the transport delay to values greater than or equal to 0.1.

1-484

idtf

sys.Structure.ioDelay.Minimum must be greater than or equal
to zero.

• Maximum— Maximum value that the parameter can assume during
estimation.

• Free — Boolean specifying whether the parameter is a free
estimation variable. If you want to fix the value of a parameter
during estimation, set the corresponding Free = false. For
example, sys.Structure.den.Free = false fixes all of the
denominator coefficients in sys to the values specified in
sys.Structure.den.Value.

For denominators, the value of Free for the leading coefficient,
specified by sys.Structure.den.Free(1), is always false (the
leading denominator coefficient is always fixed to 1).

• Scale — Scale of the parameter’s value. Scale is not used in
estimation.

• Info— Structure array for storing parameter units and labels. The
structure has Label and Unit fields.

Use these fields for your convenience, to store strings that describe
parameter units and labels.

For a MIMO model with Ny outputs and Nu input, Structure is an
Ny-by-Nu array. The element Structure(i,j) contains information
corresponding to the transfer function for the (i,j) input-output pair.

NoiseVariance

The variance (covariance matrix) of the model innovations e.

An identified model includes a white, Gaussian noise component e(t).
NoiseVariance is the variance of this noise component. Typically, the
model estimation function (such as tfest) determines this variance.

For SISO models, NoiseVariance is a scalar. For MIMO models,
NoiseVariance is a Ny-by-Ny matrix, where Ny is the number of outputs
in the system.

1-485

idtf

Report

Information about the estimation process.

Report contains the following fields:

• InitMethod — Method used to initialize model coefficients before
iterative prediction error minimization

• N4Weight—Subspace algorithm option value used by n4sidestimator
(see n4sidOptions)

• N4Horizon — Forward and backward prediction horizons used by
n4sid (see n4sidOptions)

• InitialCondition — Whether estimation estimated initial
conditions or fixed them at zero

• Fit — Quantitative quality assessment of estimation, including
percent fit to data and final prediction error

• Parameters — Estimated values of model parameters and their
covariance

• OptionsUsed— Options used during estimation (see tfestOptions)

• RandState— Random number stream state at start of estimation

• Status— Whether model was obtained by construction, estimated,
or modified after estimation

• Method — Name of estimation method used

• DataUsed — Attributes of data used for estimation, such as name
and sampling time

• Termination — Termination conditions for the iterative search
scheme used for prediction error minimization, such as final cost
value or stopping criterion

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays

1-486

idtf

in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value representing the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Estimation treats InputDelay as a fixed constant of the model.
Estimation uses the ioDelay property for estimating time delays. To
specify initial values and constraints for estimation of time delays, use
sys.Structure.ioDelay.

Default: 0 for all input channels

OutputDelay

Output delays.

For identified systems, like idtf, OutputDelay is fixed to zero.

Ts

Sampling time. For continuous-time models, Ts = 0. For discrete-time
models, Ts is a positive scalar representing the sampling period. This
value is expressed in the unit specified by the TimeUnit property of
the model. To denote a discrete-time model with unspecified sampling
time, set Ts = -1.

Changing this property does not discretize or resample the model.
Use c2d and d2c to convert between continuous- and discrete-time
representations. Use d2d to change the sampling time of a discrete-time
system.

Default: 0 (continuous time)

TimeUnit

1-487

idtf

String representing the unit of the time variable. For continuous-time
models, this property represents any time delays in the model. For
discrete-time models, it represents the sampling time Ts. Use any of
the following values:

• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Changing this property changes the overall system behavior. Use
chgTimeUnit to convert between time units without modifying system
behavior.

Default: 'seconds'

InputName

Input channel names. Set InputName to a string for single-input model.
For a multi-input model, set InputName to a cell array of strings.

Alternatively, use automatic vector expansion to assign input names for
multi-input models. For example, if sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to
{'controls(1)';'controls(2)'}.

1-488

idtf

You can use the shorthand notation u to refer to the InputName
property. For example, sys.u is equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

InputUnit

Input channel units. Use InputUnit to keep track of input signal units.
For a single-input model, set InputUnit to a string. For a multi-input
model, set InputUnit to a cell array of strings. InputUnit has no effect
on system behavior.

Default: Empty string '' for all input channels

InputGroup

Input channel groups. The InputGroup property lets you assign the
input channels of MIMO systems into groups and refer to each group
by name. Specify input groups as a structure. In this structure, field
names are the group names, and field values are the input channels
belonging to each group. For example:

sys.InputGroup.controls = [1 2];
sys.InputGroup.noise = [3 5];

creates input groups named controls and noise that include input
channels 1, 2 and 3, 5, respectively. You can then extract the subsystem
from the controls inputs to all outputs using:

sys(:,'controls')

Default: Struct with no fields

1-489

idtf

OutputName

Output channel names. Set OutputName to a string for single-output
model. For a multi-output model, set OutputName to a cell array of
strings.

Alternatively, use automatic vector expansion to assign output names
for multi-output models. For example, if sys is a two-output model,
enter:

sys.OutputName = 'measurements';

The output names to automatically expand to
{'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName
property. For example, sys.y is equivalent to sys.OutputName.

Output channel names have several uses, including:

• Identifying channels on model display and plots

• Extracting subsystems of MIMO systems

• Specifying connection points when interconnecting models

Default: Empty string '' for all input channels

OutputUnit

Output channel units. Use OutputUnit to keep track of output signal
units. For a single-output model, set OutputUnit to a string. For
a multi-output model, set OutputUnit to a cell array of strings.
OutputUnit has no effect on system behavior.

Default: Empty string '' for all input channels

OutputGroup

Output channel groups. The OutputGroup property lets you assign the
output channels of MIMO systems into groups and refer to each group
by name. Specify output groups as a structure. In this structure, field

1-490

idtf

names are the group names, and field values are the output channels
belonging to each group. For example:

sys.OutputGroup.temperature = [1];
sys.InputGroup.measurement = [3 5];

creates output groups named temperature and measurement that
include output channels 1, and 3, 5, respectively. You can then extract
the subsystem from all inputs to the measurement outputs using:

sys('measurement',:)

Default: Struct with no fields

Name

System name. Set Name to a string to label the system.

Default: ''

Notes

Any text that you want to associate with the system. Set Notes to a
string or a cell array of strings.

Default: {}

UserData

Any type of data you wish to associate with system. Set UserData to
any MATLAB data type.

Default: []

See Also tfdata | getcov | getpar | idpoly | idss | idproc | idfrd
| oe | tfest | translatecov

Concepts • “Dynamic System Models”

1-491

ifft

Purpose Transform iddata objects from frequency to time domain

Syntax dat = ifft(Datf)

Description ifft transforms a frequency-domain iddata object to the time domain.
It requires the frequencies on Datf to be equally spaced from frequency
0 to the Nyquist frequency. This means that if there are N frequencies
in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where F is pi/Ts if N is odd and
F = pi/Ts*(1-1/N) if N is even.

See Also iddata | fft

1-492

impulse

Purpose Impulse response plot of dynamic system; impulse response data

Syntax impulse(sys)
impulse(sys,Tfinal)
impulse(sys,t)
impulse(sys1,sys2,...,sysN)
impulse(sys1,sys2,...,sysN,Tfinal)
impulse(sys1,sys2,...,sysN,t)
[y,t] = impulse(sys)
[y,t] = impulse(sys,Tfinal)
y = impulse(sys,t)
[y,t,x] = impulse(sys)
[y,t,x,ysd] = impulse(sys)

Description impulse calculates the unit impulse response of a dynamic system
model. For continuous-time dynamic systems, the impulse response
is the response to a Dirac input δ(t). For discrete-time systems, the
impulse response is the response to a unit area pulse of length Ts and
height 1/Ts, where Ts is the sampling time of the system. (This pulse
approaches δ(t) as Ts approaches zero.) For state-space models, impulse
assumes initial state values are zero.

impulse(sys) plots the impulse response of the dynamic system
model sys. This model can be continuous or discrete, and SISO or
MIMO. The impulse response of multi-input systems is the collection of
impulse responses for each input channel. The duration of simulation
is determined automatically to display the transient behavior of the
response.

impulse(sys,Tfinal) simulates the impulse response from t = 0 to
the final time t = Tfinal. Express Tfinal in the system time units,
specified in the TimeUnit property of sys. For discrete-time systems
with unspecified sampling time (Ts = -1), impulse interprets Tfinal
as the number of sampling periods to simulate.

impulse(sys,t) uses the user-supplied time vector t for simulation.
Express t in the system time units, specified in the TimeUnit property
of sys. For discrete-time models, t should be of the form Ti:Ts:Tf,

1-493

impulse

where Ts is the sample time. For continuous-time models, t should be
of the form Ti:dt:Tf, where dt becomes the sample time of a discrete
approximation to the continuous system (see “Algorithms” on page
1-497). The impulse command always applies the impulse at t=0,
regardless of Ti.

To plot the impulse responses of several models sys1,..., sysN on a
single figure, use:

impulse(sys1,sys2,...,sysN)

impulse(sys1,sys2,...,sysN,Tfinal)

impulse(sys1,sys2,...,sysN,t)

As with bode or plot, you can specify a particular color, linestyle,
and/or marker for each system, for example,

impulse(sys1,'y:',sys2,'g--')

See "Plotting and Comparing Multiple Systems" and the bode entry in
this section for more details.

When invoked with output arguments:

[y,t] = impulse(sys)

[y,t] = impulse(sys,Tfinal)

y = impulse(sys,t)

impulse returns the output response y and the time vector t used for
simulation (if not supplied as an argument to impulse). No plot is
drawn on the screen. For single-input systems, y has as many rows
as time samples (length of t), and as many columns as outputs. In
the multi-input case, the impulse responses of each input channel are
stacked up along the third dimension of y. The dimensions of y are then

For state-space models only:

[y,t,x] = impulse(sys)

(length of t) × (number of outputs) × (number of inputs)

1-494

impulse

and y(:,:,j) gives the response to an impulse disturbance entering
the jth input channel. Similarly, the dimensions of x are

(length of t) × (number of states) × (number of inputs)

[y,t,x,ysd] = impulse(sys) returns the standard deviation YSD of
the response Y of an identified system SYS. YSD is empty if SYS does not
contain parameter covariance information.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Impulse Response Plot of Second-Order State-Space Model

Plot the impulse response of the second-order state-space model

x

x

x

x
1

2

1

2

0 5572 0 7814
0 7814 0

1 1
0 2

⎡

⎣
⎢

⎤

⎦
⎥ =

− −⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣

. .
. ⎢⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

= []⎡
⎣
⎢

⎤

⎦
⎥

u

u

y
x

x

1

2

1

2
1 9691 6 4493. .

use the following commands.

a = [-0.5572 -0.7814;0.7814 0];
b = [1 -1;0 2];
c = [1.9691 6.4493];
sys = ss(a,b,c,0);
impulse(sys)

1-495

impulse

The left plot shows the impulse response of the first input channel, and
the right plot shows the impulse response of the second input channel.

You can store the impulse response data in MATLAB arrays by

[y,t] = impulse(sys)

Because this system has two inputs, y is a 3-D array with dimensions

size(y)

ans =
101 1 2

(the first dimension is the length of t). The impulse response of the first
input channel is then accessed by

1-496

impulse

y(:,:,1)

Example 2

Fetch the impulse response and the corresponding 1 std uncertainty of
an identified linear system.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

set(z, 'InputName', 'Voltage', 'InputUnit', 'V');

set(z, 'OutputName', {'Angular position', 'Angular velocity'});

set(z, 'OutputUnit', {'rad', 'rad/s'});

set(z, 'Tstart', 0, 'TimeUnit', 's');

model = tfest(z,2);

[y,t,~,ysd] = impulse(model,2);

% Plot 3 std uncertainty

subplot(211)

plot(t,y(:,1), t,y(:,1)+3*ysd(:,1),'k:', t,y(:,1)-3*ysd(:,1),'k:')

subplot(212)

plot(t,y(:,2), t,y(:,2)+3*ysd(:,2),'k:', t,y(:,2)-3*ysd(:,2),'k:')

Algorithms Continuous-time models are first converted to state space. The impulse
response of a single-input state-space model

x Ax bu
y Cx
= +
=

is equivalent to the following unforced response with initial state b.

x Ax x b
y Cx
= =
=

, ()0

To simulate this response, the system is discretized using zero-order
hold on the inputs. The sampling period is chosen automatically based

1-497

impulse

on the system dynamics, except when a time vector t = 0:dt:Tf is
supplied (dt is then used as sampling period).

Limitations The impulse response of a continuous system with nonzero D matrix
is infinite at t = 0. impulse ignores this discontinuity and returns the
lower continuity value Cb at t = 0.

See Also ltiview | step | initial | lsim | impulseest

1-498

impulseest

Purpose Nonparameteric impulse response estimation

Syntax sys = impulseest(data)
sys = impulseest(data,N)
sys = impulseest(data,N,NK)
sys = impulseest(___ ,options)

Description sys = impulseest(data) estimates an impulse response model, sys,
using time- or frequency-domain data, data. The model order (number
of nonzero impulse response coefficients) is determined automatically
using persistence of excitation analysis on the input data.

sys = impulseest(data,N) estimates an Nth order impulse response
model, corresponding to the time range 0 :Ts : (N –1)*Ts, where Ts
is the data sampling time.

sys = impulseest(data,N,NK) specifies a transport delay of NK
samples in the estimated impulse response.

sys = impulseest(___ ,options) specifies estimation options using
the options set options.

Use nonparametric impulse response to analyze data for feedback
effects, delays and significant time constants.

Tips • To view the impulse or step response of sys, use either impulseplot
or stepplot, respectively.

• A significant value of the impulse response of sys for negative time
values indicates the presence of feedback in the data.

• To view the region of insignificant impulse response
(statistically zero) in a plot, right-click on the plot and select
Characteristics > Confidence Region. A patch depicting the
zero-response region appears on the plot. The impulse response at
any time value is significant only if it lies outside the zero response
region. The level of significance depends on the number of standard
deviations specified in ShowConfidence or options in the property

1-499

impulseest

editor. A common choice is 3 standard deviations, which gives 99.7%
significance.

Input
Arguments

data

Estimation data with at least one input signal and nonzero sample time.

For time domain estimation, data is an iddata object containing the
input and output signal values.

For frequency domain estimation, data can be one of the following:

• Frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — ‘Frequency’

N

Order of the FIR model. Must be one of the following:

• A positive integer.

For data containing Nu inputs and Ny outputs, you can also specify
N as an Ny-by-Nu matrix of positive integers, such that N(i,j)
represents the length of impulse response from input j to output i.

• [] — Determines the order automatically using persistence of
excitation analysis on the input data.

NK

Transport delay in the estimated impulse response, specified as a scalar
integer. For data containing Nu inputs and Ny outputs, you can also
specify a Ny-by-Nu matrix.

• To generate the impulse response coefficients for negative time
values, which is useful for feedback analysis, use a negative integer.

1-500

impulseest

If you specify a negative value, the value must be the same across
all output channels.

You can also use NK = 'negative' to automatically pick negative
lags for all input/output channels of the model.

• Specify NK = 0 if the delay is unknown. The true delay is then be
indicated by insignificant impulse response values in the beginning
of the response.

• Specify NK = 1 to create a system whose leading numerator
coefficient is zero.

Positive values of NK greater than 1 are stored in the ioDelay property
of sys (sys.ioDelay = max(NK-1,0)). Negative values are stored in
the InputDelay property.

The impulse response (input j to output i) coefficients correspond to
the time span NK(i,j)*Ts : Ts : (N(ij)+NK(i,j)-1)*Ts.

Default: zeros(Ny, Nu)

options

Estimation options that specify the following:

• Prefilter order

• Regularization algorithm

• Input and output data offsets

Use impulseestOptions to create the options set.

Output
Arguments

sys

Estimated impulse response model.

sys is an idtf model, which encapsulates an FIR model.

1-501

impulseest

Examples Identify Nonparametric Impulse Response Model from Data

Compute a nonparametric impulse response model using data from a
hair dryer. The input is the voltage applied to the heater and the output
is the heater temperature. Use the first 500 samples for estimation.

load dry2
ze = dry2(1:500);
sys = impulseest(ze);

ze is an iddata object that contains time-domain data.

sys, the identified nonparametric impulse response model, is an idtf
model.

Analyze the impulse response of the identified model from time 0 to
time 1.

impulseplot(sys,1);

Right-click the plot and select Characteristics > Confidence Region
to view the statistically zero-response region.

1-502

impulseest

The first significantly nonzero response value occurs at 0.24 seconds,
or, the third lag. This implies that the transport delay is 3 samples.
To generate a model where the 3-sample delay is imposed, set the
transport delay to 3:

sys = impulseest(ze,[],3)

Specify Order of FIR Model

Estimate an impulse response model with a specific order.

load iddata3 z3
sys = impulseest(z3,35);

Specify Transport Delay in FIR Model

Estimate an impulse response model with transport delay of 3 samples.

1-503

impulseest

If you know about the presence of delay in the input/output data in
advance, use the value as a transport delay for impulse response
estimation.

Generate data with 3 sample input to output lag.

u = rand(100,1);
sys = idpoly([1 .1 .4],[0 0 0 4 -2],[1 1 .1]);
opt = simOptions('AddNoise',true);
y = sim(sys,u,opt);
data = iddata(y,u,1);

Estimate a 20th order model with a 3 sample transport delay.

model = impulseest(data,20,3);

Obtain Regularized Estimate of Impulse Response Model

Obtain regularized estimates of impulse response model using the
regularizing kernel estimation option.

Estimate a model using regularization.

load iddata3 z3;
sys1 = impulseest(z3);

By default, tuned and correlated kernel (`TC') is used for regularization.

Estimate a model with no regularization.

opt = impulseestOptions('RegulKernel','none');
sys2 = impulseest(z3,opt);

Compare the impulse response of both models.

h = impulseplot(sys1,sys2,70);

1-504

impulseest

As the plot shows, using regularization makes the response smoother.

Plot the confidence interval.

showConfidence(h);

1-505

impulseest

The uncertainty in the computed response is reduced at larger lags for
the model using regularization. Regularization decreases variance at
the price of some bias. The tuning of the regularization is such that the
bias is dominated by the variance error though.

Test Measured Data for Feedback Effects

Use the empirical impulse response of the measured data to verify
whether there are feedback effects. Significant amplitude of the impulse
response for negative time values indicates feedback effects in data.

Compute the noncausal impulse response using a fourth-order
prewhitening filter, automatically chosen order and negative lag using
nonregularized estimation.

load iddata3 z3;
opt = impulseestOptions('pw',4,'RegulKernel','none');
sys = impulseest(z3,[],'negative',opt);

sys is a noncausal model containing response values for negative time.

1-506

impulseest

Analyze the impulse response of the identified model.

impulseplot(sys);

View the statistically zero-response region by right-clicking on the plot
and selecting Characteristics > Confidence Region.

The large response value at t=0 (zero lag) suggests that the data comes
from a process containing feedthrough. That is, the input affects the
output instantaneously. It could also be that there is a direct feedback
effect (proportional control without some delay that u(t) is determined
partly by y(t)).

Also, the response values are significant for some negative time lags,
such as at –7 seconds and –9 seconds. Such significant negative values
suggest the possibility of feedback in the data.

Compute Impulse Response on Frequency Response Data

Compute an impulse response model for frequency response data.

load demofr;
zfr = AMP.*exp(1i*PHA*pi/180);

1-507

impulseest

Ts = 0.1;
data = idfrd(zfr,W,Ts);
sys = impulseest(data);

Compare Identified Nonparametric and Parametric Models

Identify parametric and nonparametric models for a data set, and
compare their step response.

Identify the impulse response model (nonparametric) and state-space
model (parametric), based on a data set.

load iddata1 z1;
sys1 = impulseest(z1);
sys2 = ssest(z1,4);

sys1 is a discrete-time identified transfer function model.

sys2 is a continuous-time identified state-space model.

Compare the step response for sys1 and sys2.

step(sys1,'b',sys2,'r');
legend('impulse response model','state-space model');

1-508

impulseest

Algorithms Correlation analysis refers to methods that estimate the impulse
response of a linear model, without specific assumptions about model
orders.

The impulse response, g, is the system’s output when the input is an
impulse signal. The output response to a general input, u(t), is obtained
as the convolution with the impulse response. In continuous time:

y t g u t d
t

()

In discrete-time:

y t g k u t k
k

1

The values of g(k) are the discrete time impulse response coefficients.

1-509

impulseest

You can estimate the values from observed input-output data in several
different ways. impulseest estimates the first n coefficients using the
least-squares method to obtain a finite impulse response (FIR) model
of order n.

Several important options are associated with the estimate:

• Prewhitening — The input can be pre-whitened by applying an
input-whitening filter of order PW to the data. This minimizes the
effect of the neglected tail (k > n) of the impulse response.

1 A filter of order PW is applied such that it whitens the input signal
u:

1/A = A(u)e, where A is a polynomial and e is white noise.

2 The inputs and outputs are filtered using the filter:

uf = Au, yf = Ay

3 The filtered signals uf and yf are used for estimation.

You can specify prewhitening using the PW name-value pair argument
of impulseestOptions.

• Regularization — The least-squares estimate can be regularized.
This means that a prior estimate of the decay and mutual correlation
among g(k) is formed and used to merge with the information about
g from the observed data. This gives an estimate with less variance,
at the price of some bias. You can choose one of the several kernels to
encode the prior estimate.

This option is essential because, often, the model order n can be
quite large. In cases where there is no regularization, n can be
automatically decreased to secure a reasonable variance.

You can specify the regularizing kernel using the RegulKernel
Name-Value pair argument of impulseestOptions.

• Autoregressive Parameters — The basic underlying FIR model
can be complemented by NA autoregressive parameters, making it
an ARX model.

1-510

impulseest

y t g k u t k a y t k
k

n

k
k

NA

1 1

This gives both better results for small n and allows unbiased
estimates when data are generated in closed loop. impulseest uses
NA = 5 for t>0 and NA = 0 (no autoregressive component) for t<0.

• Noncausal effects — Response for negative lags. It may happen
that the data has been generated partly by output feedback:

u t h k y t k r t
k

() ()

0

where h(k) is the impulse response of the regulator and r is a setpoint
or disturbance term. The existence and character of such feedback
h can be estimated in the same way as g, simply by trading places
between y and u in the estimation call. Using impulseest with an

indication of negative delays, mi impulseest (, ,),data nk nb nk 0 ,
returns a model mi with an impulse response

h nk h nk h g g g nb nk(-), (- -),..., (), (), (),..., ()1 0 1 2

aligned so that it corresponds to lags nk nk nb nk, ,.., , , ,..., 1 0 1 2 .
This is achieved because the input delay (InputDelay) of model mi
is nk.

For a multi-input multi-output system, the impulse response g(k) is
an ny-by-nu matrix, where ny is the number of outputs and nu is the
number of inputs. The i–j element of the matrix g(k) describes the
behavior of the ith output after an impulse in the jth input.

See Also impulseestOptions | impulse | step | cra | spa

Concepts • “What Is Time-Domain Correlation Analysis?”

1-511

impulseestOptions

Purpose Options set for impulseest

Syntax options = impulseestOptions
options = impulseestOptions(Name,Value)

Description options = impulseestOptions creates a default options set for
impulseest.

options = impulseestOptions(Name,Value) creates an options set
with the options specified by one or more Name,Value pair arguments.

Tips • A linear model cannot describe arbitrary input-output offsets.
Therefore, before using the data, you must either detrend it or
remove the levels using InputOffset and OutputOffset. You can
reintroduce the removed data during simulations by using the
InputOffset and OutputOffset simulation options. For more
information, see simOptions.

• Estimating the impulse response by specifying either InputOffset,
OutputOffset or both is equivalent to detrending the data using
getTrend and detrend. For example:

opt = impulseestOptions('InputOffest',in_off.'OuputOffset',out_off);
impulseest(data,opt);

is the same as:

Tr = getTrend(data),
Tr.InputOffset = in_off
TR.OutputOffset = out_off
dataT = detrend(data,Tr)
impulseest(dataT)

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-512

impulseestOptions

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’RegulKernel’

Regularizing kernel, used for regularized estimates of impulse response
for all input-output channels. Regularization reduces variance of
estimated model coefficients and produces a smoother response by
trading variance for bias. For more information, see [1].

Must be one of the following strings:

• 'TC' — Tuned and correlated kernel

• 'none' — No regularization is used

• 'CS' — Cubic spline kernel

• 'SE' — Squared exponential kernel

• 'SS' — Stable spline kernel

• 'HF' — High frequency stable spline kernel

• 'DI' — Diagonal kernel

• 'DC' — Diagonal and correlated kernel

Default: 'TC'

’PW’

Order of the input prewhitening filter. Must be one of the following:

• 'auto' — Uses a filter of order 10 when RegulKernel is 'none';
otherwise, 0.

• Nonnegative integer

Use a nonzero value of prewhitening only for unregularized estimation
(RegulKernel is 'none').

Default: 'auto'

1-513

impulseestOptions

’InputOffset’

Input signal offset level of time-domain estimation data. Must be one
of the following:

• An Nu-element column vector, where Nu is the number of inputs.
For multi-experiment data, specify a Nu-by-Ne matrix, where Ne is
the number of experiments. The offset value InputOffset(i,j) is
subtracted from the ith input signal of the jth experiment.

• [] — No offsets.

Default: []

’OutputOffset’

Output signal offset level of time-domain estimation data. Must be
one of the following:

• An Ny-element column vector, where Ny is the number of outputs.
For multi-experiment data, specify a Ny-by-Ne matrix, where Ne is
the number of experiments. The offset value OputOffset(i,j) is
subtracted from the ith output signal of the jth experiment.

• [] — No offsets.

Default: []

’Advanced’

Structure with the following fields:

• MaxSize — Maximum allowable size of Jacobian matrices formed
during estimation. Specify a large positive number.

Default: 250e3

• SearchMethod — Search method for estimating regularization
parameters. Must be one of the following strings:

- 'gn': Quasi-Newton line search

1-514

impulseestOptions

- 'fmincon': Trust-region-reflective constrained minimizer.
Requires Optimization Toolbox software.

In general, 'fmincon' is better than 'gn' for handling bounds on
regularization parameters that are imposed automatically during
estimation. Thus, if you have the Optimization Toolbox software,
use 'fmincon'.

SearchMethod is used only when RegulKernel is not 'none'.

Default: 'gn'

Output
Arguments

options

Option set containing the specified options for impulseest.

Examples Create Default Options Set for Impulse Response Estimation

Create a default options set for impulseest.

options = impulseestOptions;

Specify Regularizing Kernel and Prewhitening Options for
Impulse Response Estimation

Specify 'HF' regularizing kernel and order of prewhitening filter for
impulseest.

options = impulseestOptions('RegulKernel','HF','PW',5);

Alternatively, use dot notation to specify these options.

options = impulseestOptions;
options.RegulKernel = 'HF';
options.PW = 5;

References [1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer
Functions, Regularizations and Gaussian Processes - Revisited”,
Automatica, Volume 48, August 2012.

See Also impulseest

1-515

impulseplot

Purpose Plot impulse response and return plot handle

Syntax impulseplot(sys)
impulseplot(sys,Tfinal)
impulseplot(sys,t)
impulseplot(sys1,sys2,...,sysN)
impulseplot(sys1,sys2,...,sysN,Tfinal)
impulseplot(sys1,sys2,...,sysN,t)
impulseplot(AX,...)
impulseplot(..., plotoptions)
h = impulseplot(...)

Description impulseplot plots the impulse response of the dynamic system model
sys. For multi-input models, independent impulse commands are
applied to each input channel. The time range and number of points are
chosen automatically. For continuous systems with direct feedthrough,
the infinite pulse at t=0 is disregarded. impulseplot can also return
the plot handle, h. You can use this handle to customize the plot with
the getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

impulseplot(sys) plots the impulse response of the LTI model without
returning the plot handle.

impulseplot(sys,Tfinal) simulates the impulse response from t = 0
to the final time t = Tfinal. Express Tfinal in the system time units,
specified in the TimeUnit property of sys. For discrete-time systems
with unspecified sampling time (Ts = -1), impulseplot interprets
Tfinal as the number of sampling intervals to simulate.

impulseplot(sys,t) uses the user-supplied time vector t for
simulation. Express t in the system time units, specified in the
TimeUnit property of sys. For discrete-time models, t should be of
the form Ti:Ts:Tf, where Ts is the sample time. For continuous-time
models, t should be of the form Ti:dt:Tf, where dt becomes the

1-516

impulseplot

sample time of a discrete approximation to the continuous system (see
impulse). The impulseplot command always applies the impulse at
t=0, regardless of Ti.

To plot the impulse response of multiple LTI models sys1,sys2,... on a
single plot, use:

impulseplot(sys1,sys2,...,sysN)

impulseplot(sys1,sys2,...,sysN,Tfinal)

impulseplot(sys1,sys2,...,sysN,t)

You can also specify a color, line style, and marker for each system, as in

impulseplot(sys1,'r',sys2,'y--',sys3,'gx')

impulseplot(AX,...) plots into the axes with handle AX.

impulseplot(..., plotoptions) plots the impulse response with the
options specified in plotoptions. Type

help timeoptions

for more detail.

h = impulseplot(...) plots the impulse response and returns the
plot handle h.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Normalize the impulse response of a third-order system.

sys = rss(3);
h = impulseplot(sys);
% Normalize responses
setoptions(h,'Normalize','on');

1-517

impulseplot

Example 2

Plot the impulse response and the corresponding 1 std "zero interval" of
an identified linear system.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

set(z, 'InputName', 'Voltage', 'InputUnit', 'V');

set(z, 'OutputName', {'Angular position', 'Angular velocity'});

set(z, 'OutputUnit', {'rad', 'rad/s'});

set(z, 'Tstart', 0, 'TimeUnit', 's');

model = n4sid(z,4,n4sidOptions('Focus', 'simulation'));

h = impulseplot(model,2);

showConfidence(h);

See Also getoptions | impulse | setoptions | showConfidence

1-518

init

Purpose Set or randomize initial parameter values

Syntax m = init(m0)
m = init(m0,R,pars,sp)

Description This function randomizes initial parameter estimates for model
structures m0 for any linear or nonlinear identified model. It does not
support idnlgrey models. m is the same model structure as m0, but
with a different nominal parameter vector. This vector is used as the
initial estimate by pem.

The parameters are randomized around pars with variances given by
the row vector R. Parameter number k is randomized as pars(k) +
e*sqrt(R(k)), where e is a normal random variable with zero mean
and a variance of 1. The default value of R is all ones, and the default
value of pars is the nominal parameter vector in m0.

Only models that give stable predictors are accepted. If sp = 'b', only
models that are both stable and have stable predictors are accepted.

sp = 's' requires stability only of the model, and sp = 'p' requires
stability only of the predictor. sp = 'p' is the default.

Sufficiently free parameterizations can be stabilized by direct means
without any random search. To just stabilize such an initial model, set
R = 0. With R > 0, randomization is also done.

For model structures where a random search is necessary to find a
stable model/predictor, a maximum of 100 trials is made by init. It
can be difficult to find a stable predictor for high-order systems by
trial and error.

See Also idnlarx | idnlhw | rsample | simsd

1-519

interp

Purpose Interpolate FRD model

Syntax isys = interp(sys,freqs)

Description isys = interp(sys,freqs) interpolates the frequency response data
contained in the FRD model sys at the frequencies freqs. interp,
which is an overloaded version of the MATLAB function interp, uses
linear interpolation and returns an FRD model isys containing the
interpolated data at the new frequencies freqs. If sys is an IDFRD
model, the noise spectrum, if non-empty, is also interpolated. The
response and noise covariance data, if available, are also interpolated.

You should express the frequency values freqs in the same units as
sys.frequency. The frequency values must lie between the smallest
and largest frequency points in sys (extrapolation is not supported).

See Also freqresp | frd | idfrd

1-520

iopzmap

Purpose Plot pole-zero map for I/O pairs of model

Syntax iopzmap(sys)
iopzmap(sys1,sys2,...)

Description iopzmap(sys) computes and plots the poles and zeros of each
input/output pair of the dynamic system model sys. The poles are
plotted as x’s and the zeros are plotted as o’s.

iopzmap(sys1,sys2,...) shows the poles and zeros of multiple models
sys1,sys2,... on a single plot. You can specify distinctive colors for each
model, as in iopzmap(sys1,'r',sys2,'y',sys3,'g').

The functions sgrid or zgrid can be used to plot lines of constant
damping ratio and natural frequency in the s or z plane.

For model arrays, iopzmap plots the poles and zeros of each model in
the array on the same diagram.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Create a one-input, two-output system and plot pole-zero maps for I/O
pairs.

H = [tf(-5 ,[1 -1]); tf([1 -5 6],[1 1 0])];
iopzmap(H)

1-521

iopzmap

Example 2

View the poles and zeros of an over-parameterized state-space model
estimated using input-output data.

load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'))
iopzmap(sys)

The plot shows that there are two pole-zero pairs that almost overlap,
which hints are their potential redundancy.

See Also pzmap | pole | zero | sgrid | zgrid | iopzplot

1-522

iopzplot

Purpose Plot pole-zero map for I/O pairs and return plot handle

Syntax h = iopzplot(sys)
iopzplot(sys1,sys2,...)
iopzplot(AX,...)
iopzplot(..., plotoptions)

Description h = iopzplot(sys) computes and plots the poles and zeros of each
input/output pair of the LTI model SYS. The poles are plotted as x’s
and the zeros are plotted as o’s. It also returns the plot handle h. You
can use this handle to customize the plot with the getoptions and
setoptions commands. Type

help pzoptions

for a list of available plot options.

iopzplot(sys1,sys2,...) shows the poles and zeros of multiple
LTI models SYS1,SYS2,... on a single plot. You can specify distinctive
colors for each model, as in

iopzplot(sys1,'r',sys2,'y',sys3,'g')

iopzplot(AX,...) plots into the axes with handle AX.

iopzplot(..., plotoptions) plots the poles and zeros with the
options specified in plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant
damping ratio and natural frequency in the s or z plane.

For arrays sys of LTI models, iopzplot plots the poles and zeros of
each model in the array on the same diagram.

1-523

iopzplot

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Use the plot handle to change the I/O grouping of a pole/zero map.

sys = rss(3,2,2);
h = iopzplot(sys);
% View all input-output pairs on a single axis.
setoptions(h,'IOGrouping','all')

Example 2

View the poles and zeros of an over-parameterized state-space model
estimated using input-output data.

load iddata1
sys = ssest(z1,6,ssestOptions('focus','simulation'));
h = iopzplot(sys);
showConfidence(h)

There is at least one pair of complex-conjugate poles whose locations
overlap with those of a complex zero, within 1–std confidence region.
This suggests their redundancy. Hence a lower (4th) order model might
be more robust for the given data.

sys2 = ssest(z1,4,ssestOptions('focus','simulation'));
h = iopzplot(sys,sys2);
showConfidence(h)
axis([-20, 10 -30 30])

The variability in the pole-zero locations of the second model sys2 are
reduced.

See Also getoptions | iopzmap | setoptions | showConfidence

1-524

isct

Purpose Determine if dynamic system model is in continuous time

Syntax bool = isct(sys)

Description bool = isct(sys) returns a logical value of 1 (true) if the dynamic
system model sys is a continuous-time model. The function returns a
logical value of 0 (false) otherwise.

Input
Arguments

sys

Dynamic system model or array of such models.

Output
Arguments

bool

Logical value indicating whether sys is a continuous-time model.

bool = 1 (true) if sys is a continuous-time model (sys.Ts = 0). If sys
is a discrete-time model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly
set the sampling time to a nonzero value. If you do so, isdt returns
true and isct returns false.

For arrays of models, bool is true if the models in the array are
continuous.

See Also isdt | isstable

1-525

isdt

Purpose Determine if dynamic system model is in discrete time

Syntax bool = isdt(sys)

Description bool = isdt(sys) returns a logical value of 1 (true) if the dynamic
system model sys is a discrete-time model. The function returns a
logical value of 0 (false) otherwise.

Input
Arguments

sys

Dynamic system model or array of such models.

Output
Arguments

bool

Logical value indicating whether sys is a discrete-time model.

bool = 1 (true) if sys is a discrete-time model (sys.Ts 0). If sys
is a continuous-time model, bool = 0 (false).

For a static gain, both isct and isdt return true unless you explicitly
set the sampling time to a nonzero value. If you do so, isdt returns
true and isct returns false.

For arrays of models, bool is true if the models in the array are
discrete.

See Also isct | isstable

1-526

isempty

Purpose Determine whether dynamic system model is empty

Syntax isempty(sys)

Description isempty(sys) returns TRUE (logical 1) if the dynamic system model
sys has no input or no output, and FALSE (logical 0) otherwise. Where
sys is a FRD model, isempty(sys) returns TRUE when the frequency
vector is empty. Where sys is a model array, isempty(sys) returns
TRUE when the array has empty dimensions or when the LTI models in
the array are empty.

Examples Both commands

isempty(tf) % tf by itself returns an empty transfer function

isempty(ss(1,2,[],[]))

return TRUE (logical 1) while

isempty(ss(1,2,3,4))

returns FALSE (logical 0).

See Also issiso | size

1-527

isproper

Purpose Determine if dynamic system model is proper

Syntax B = isproper(sys)
B = isproper(sys,'elem')
[B, sysr] = isproper(sys)

Description B = isproper(sys) returns TRUE (logical 1) if the dynamic system
model sys is proper and FALSE (logical 0) otherwise.

A proper model has relative degree ≤ 0 and is causal. SISO transfer
functions and zero-pole-gain models are proper if the degree of their
numerator is less than or equal to the degree of their denominator (in
other words, if they have at least as many poles as zeroes). MIMO
transfer functions are proper if all their SISO entries are proper.
Regular state-space models (state-space models having no E matrix) are
always proper. A descriptor state-space model that has an invertible
E matrix is always proper. A descriptor state-space model having a
singular (non-invertible) E matrix is proper if the model has at least
as many poles as zeroes.

If sys is a model array, then B is TRUE if all models in the array are
proper.

B = isproper(sys,'elem') checks each model in a model array sys
and returns a logical array of the same size as sys. The logical array
indicates which models in sys are proper.

If sys is a proper descriptor state-space model with a non-invertible E
matrix, [B, sysr] = isproper(sys) also returns an equivalent model
sysr with fewer states (reduced order) and a non-singular E matrix.
If sys is not proper, sysr = sys.

Examples Example 1

The following commands

isproper(tf([1 0],1)) % transfer function s
isproper(tf([1 0],[1 1])) % transfer function s/(s+1)

1-528

isproper

return FALSE (logical 0) and TRUE (logical 1), respectively.

Example 2

Combining state-space models can yield results that include more states
than necessary. Use isproper to compute an equivalent lower-order
model.

H1 = ss(tf([1 1],[1 2 5]));
H2 = ss(tf([1 7],[1]));
H = H1*H2

a =
x1 x2 x3 x4

x1 -2 -2.5 0.5 1.75
x2 2 0 0 0
x3 0 0 1 0
x4 0 0 0 1

b =
u1

x1 0
x2 0
x3 0
x4 -4

c =
x1 x2 x3 x4

y1 1 0.5 0 0

d =
u1

y1 0

e =
x1 x2 x3 x4

x1 1 0 0 0
x2 0 1 0 0

1-529

isproper

x3 0 0 0 0.5
x4 0 0 0 0

H is proper and reducible:

[isprop, Hr] = isproper(H)

isprop =

1

a =
x1 x2

x1 0 0.1398
x2 -0.06988 -0.0625

b =
u1

x1 -0.125
x2 -0.1398

c =
x1 x2

y1 -0.5 -1.118

d =
u1

y1 1

e =
x1 x2

x1 0.0625 0
x2 0 0.03125

Continuous-time model.

1-530

isproper

H and Hr are equivalent, as a Bode plot demonstrates:

bode(H, Hr)

See Also ss | dss

1-531

isreal

Purpose Determine whether model parameters or data values are real

Syntax isreal(Data)
isreal(Model)

Description Data is an iddata set and Model is any linear identified model. The
isreal function returns 1 if all parameters of the model are real and if
all signals of the data set are real.

See Also realdata

1-532

issiso

Purpose Determine if dynamic system model is single-input/single-output (SISO)

Syntax issiso(sys)

Description issiso(sys) returns 1 (true) if the dynamic system model sys is SISO
and 0 (false) otherwise.

See Also isempty | size

1-533

isstable

Purpose Determine whether system is stable

Syntax B = isstable(sys)
B = isstable(sys,'elem')

Description B = isstable(sys) returns 1 (true) if the dynamic system model sys
has stable dynamics, and 0 (false) otherwise. If sys is a model array,
then B is true if all models in sys are stable.

B = isstable(sys,'elem') returns a logical array of the same size as
the model array sys. The logical array indicates which models in sys
are stable.

isstable is only supported for analytical models with a finite number
of poles.

See Also pole

1-534

ivar

Purpose AR model estimation using instrumental variable method

Syntax sys = ivar(data,na)
sys = ivar(data,na,nc)
sys = ivar(data,na,nc,max_size)

Description sys = ivar(data,na) estimates an AR polynomial model, sys, using
the instrumental variable method and the time series data data. na
specifies the order of the A polynomial.

An AR model is represented by the equation:

A q y t e t() () ()=

In the above model, e(t) is an arbitrary process, assumed to be a moving
average process of order nc, possibly time varying. nc is assumed to be
equal to na. Instruments are chosen as appropriately filtered outputs,
delayed nc steps.

sys = ivar(data,na,nc) specifies the value of the moving average
process order, nc, separately.

sys = ivar(data,na,nc,max_size) specifies the maximum size of
matrices formed during estimation.

Input
Arguments

data

Estimation time series data.

data must be an iddata object with scalar output data only.

na

Order of the A polynomial

nc

Order of the moving average process representing e(t).

max_size

1-535

ivar

Maximum matrix size.

max_size specifies the maximum size of any matrix formed by the
algorithm for estimation.

Specify max_size as a reasonably large positive integer.

Default: 250000

Output
Arguments

sys

Identified polynomial model.

sys is an AR idpoly model which encapsulates the identified
polynomial model.

Examples Compare spectra for sinusoids in noise, estimated by the IV method and
by the forward-backward least squares method.

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
0.2*randn(500,1),[]);

miv = ivar(y,4);
mls = ar(y,4);
spectrum(miv,mls)

References [1] Stoica, P., et al. Optimal Instrumental Variable Estimates of the
AR-parameters of an ARMA Process, IEEE Trans. Autom. Control,
Volume AC-30, 1985, pp. 1066–1074.

See Also ar | arx | etfe | idpoly | polyest | spa | step | spectrum

1-536

ivstruc

Purpose Loss functions for sets of ARX model structures

Syntax v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

Description NN is a matrix that defines a number of different structures of the ARX
type. Each row of NN is of the form

nn = [na nb nk]

with the same interpretation as described for arx. See struc for easy
generation of typical NN matrices.

ze and zv are iddata objects containing output-input data. Only
time-domain data is supported. Models for each model structure defined
in NN are estimated using the instrumental variable (IV) method on
data set ze. The estimated models are simulated using the inputs
from data set zv. The normalized quadratic fit between the simulated
output and the measured output in zv is formed and returned in v. The
rows below the first row in v are the transpose of NN, and the last row
contains the logarithms of the condition numbers of the IV matrix

 () ()t tT∑
A large condition number indicates that the structure is of unnecessarily
high order (see Ljung, L. System Identification: Theory for the User,
Upper Saddle River, NJ, Prentice-Hal PTR, 1999, p. 498).

The information in v is best analyzed using selstruc.

If p is equal to zero, the computation of condition numbers is suppressed.

The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained
are stable. The output-error fit calculated in v can then be misleading.

1-537

ivstruc

Examples Compare the effect of different orders and delays, using the same data
set for both the estimation and validation.

load iddata1 z1;
v = ivstruc(z1,z1,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z1,nn);

Algorithms A maximum-order ARX model is computed using the least squares
method. Instruments are generated by filtering the input(s) through
this model. The models are subsequently obtained by operating on
submatrices in the corresponding large IV matrix.

References Ljung, L. System Identification: Theory for the User, Upper Saddle
River, NJ, Prentice-Hal PTR, 1999.

See Also arxstruc | iv4 | selstruc | struc

1-538

ivx

Purpose ARX model estimation using instrumental variable method with
arbitrary instruments

Syntax sys = ivx(data,[na nb nk],x)
sys = ivx(data,[na nb nk],x,max_size)

Description sys = ivx(data,[na nb nk],x) estimates an ARX polynomial
model, sys, using the instrumental variable method with arbitrary
instruments. The model is estimated for the time series data data. [na
nb nk] specifies the ARX structure orders of the A and B polynomials
and the input to output delay, expressed in the number of samples.

An ARX model is represented as:

A q y t B q u t nk v t() () () () ()

sys = ivx(data,[na nb nk],x,max_size) specifies the maximum
size of matrices formed during estimation.

Tips • Use iv4 first for IV estimation to identify ARX polynomial models
where the instruments x are chosen automatically. Use ivx for
nonstandard situations. For example, when there is feedback present
in the data, or, when other instruments need to be tried. You can also
use iv to automatically generate instruments from certain custom
defined filters.

Input
Arguments

data

Estimation time series data.

data must be an iddata object and can represent either time- or
frequency-domain data. If using frequency domain data, the number of
outputs must be 1.

[na nb nk]

ARX model orders.

For more details on the ARX model structure, see arx.

1-539

ivx

x

Instrument variable matrix.

x is a matrix containing the arbitrary instruments for use in the
instrumental variable method.

x must be of the same size as the output data, data.y. For
multi-experiment data, specify x as a cell array with one entry for each
experiment.

The instruments used are analogous to the regression vector, with
y replaced by x.

max_size

Maximum matrix size.

max_size specifies the maximum size of any matrix formed by the
algorithm for estimation.

Specify max_size as a reasonably large positive integer.

Default: 250000

Output
Arguments

sys

Identified polynomial model.

sys is an ARX idpoly model which encapsulates the identified
polynomial model.

ivx does not return any estimated covariance information for sys.

References [1] Ljung, L. System Identification: Theory for the User, page 222,
Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

See Also arx | arxstruc | idpoly | iv4 | ivar | polyest

1-540

iv4

Purpose ARX model estimation using four-stage instrumental variable method.

Syntax sys = iv4(data,[na nb nk])
sys = iv4(data,'na',na,'nb',nb,'nk',nk)
sys = iv4(data,[na nb nk],Name,Value)
sys = iv4(data,[na nb nk], ___ ,opt)

Description sys = iv4(data,[na nb nk]) estimates an ARX polynomial model,
sys, using the four-stage instrumental variable method, for the data
object data. [na nb nk] specifies the ARX structure orders of the
A and B polynomials and the input to output delay. The estimation
algorithm is insensitive to the color of the noise term.

sys is an ARX model:

A q y t B q u t nk v t() () () () ()

Alternatively, you may also use the following syntax:

sys = iv4(data,'na',na,'nb',nb,'nk',nk)

sys = iv4(data,[na nb nk],Name,Value) estimates an ARX
polynomial with additional options specified by one or more
Name,Value pair arguments.

sys = iv4(data,[na nb nk], ___ ,opt) uses the option set, opt, to
configure the estimation behavior.

Input
Arguments

data

Estimation time series data.

data must be an iddata object.

[na nb nk]

ARX polynomial orders.

For multi-output model, [na nb nk] contains one row for every
output. In particular, specify na as an Ny-by-Ny matrix, where each

1-541

iv4

entry is the polynomial order relating the corresponding output pair.
Here, Ny is the number of outputs. Specify nb and nk as Ny-by-Nu
matrices, where Nu is the number of inputs. For more details on the
ARX model structure, see arx.

opt

Estimation options.

opt is an options set that configures the estimation options. These
options include:

• estimation focus

• handling of initial conditions

• handling of data offsets

Use iv4Options to create the options set.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

1-542

iv4

Default: 0 for all input channels

’ioDelay’

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit
stored in the TimeUnit property. For discrete-time systems, specify
transport delays in integer multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to
a Ny-by-Nu array. Each entry of this array is a numerical value that
represents the transport delay for the corresponding input/output pair.
You can also set ioDelay to a scalar value to apply the same delay to all
input/output pairs.

Default: 0 for all input/output pairs

Output
Arguments

sys

Identified polynomial model of ARX structure.

sys is an idpoly model which encapsulates the identified polynomial
model.

Examples Estimate a two-input, one-output system with different delays on the
inputs u1 and u2.

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

Algorithms Estimation is performed in 4 stages. The first stage uses the arx
function. The resulting model generates the instruments for a
second-stage IV estimate. The residuals obtained from this model are
modeled as a high-order AR model. At the fourth stage, the input-output

1-543

iv4

data is filtered through this AR model and then subjected to the IV
function with the same instrument filters as in the second stage.

For the multiple-output case, optimal instruments are obtained only if
the noise sources at the different outputs have the same color. The
estimates obtained with the routine are reasonably accurate, however,
even in other cases.

References [1] Ljung, L. System Identification: Theory for the User, equations
(15.21) through (15.26), Upper Saddle River, NJ, Prentice-Hal PTR,
1999.

See Also iv4Options | arx | armax | bj | idpoly | ivx | n4sid | oe
| polyest

1-544

iv4Options

Purpose Option set for iv4

Syntax opt = iv4Options
opt = iv4Options(Name,Value)

Description opt = iv4Options creates the default options set for iv4.

opt = iv4Options(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify handling of initial conditions during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial condition is set to zero.

• 'estimate' — The initial condition is treated as an independent
estimation parameter.

• 'backcast'— The initial condition is estimated using the best least
squares fit.

• 'auto'— The software chooses the initial condition handling method
based on the estimation data.

Default: 'auto'

’Focus’

1-545

iv4Options

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes one-step-ahead prediction, which
typically favors fitting small time intervals (higher frequency range).
From a statistical-variance point of view, this weighting function is
optimal. However, this method neglects the approximation aspects
(bias) of the fit. Use 'stability'when you want to ensure a stable
model.

• 'stability' — Same as 'prediction', but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

1-546

iv4Options

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

1-547

iv4Options

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Weight of prediction errors in multi-output estimation.

Specify OutputWeight as a positive, semidefinite symmetric matrix
(W). The software minimizes the trace of the weighted prediction error

1-548

iv4Options

matrix trace(E'*E*W). E is the matrix of prediction errors, with one
column for each output, and W is the positive, semidefinite symmetric
matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-input, multiple-output
models, or the reliability of corresponding data.

This option is relevant only for multi-output models.

’Advanced’

Advanced is a structure with the following fields:

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

Output
Arguments

opt

Option set containing the specified options for iv4.

Examples Create Default Options Set for ARX Model Estimation Using
4-Stage Instrument Variable Method

opt = iv4Options;

1-549

iv4Options

Specify Options for ARX Model Estimation Using 4-Stage
Instrument Variable Method

Create an options set for iv4 using the 'backcast' algorithm to
initialize the state. Set Display to 'on'.

opt = iv4Options('InitialState','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = iv4Options;
opt.InitialState = 'backcast';
opt.Display = 'on';

See Also iv4

1-550

linapp

Purpose Linear approximation of nonlinear ARX and Hammerstein-Wiener
models for given input

Syntax lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)

Description lm = linapp(nlmodel,u) computes a linear approximation of a
nonlinear ARX or Hammerstein-Wiener model by simulating the model
output for the input signal u, and estimating a linear model lm from u
and the simulated output signal. lm is an idpoly model.

lm = linapp(nlmodel,umin,umax,nsample) computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by
first generating the input signal as a uniformly distributed white noise
from the magnitude range umin and umax and (optionally) the number
of samples.

Input
Arguments

nlmodel
Name of the idnlarx or idnlhwmodel object you want to linearize.

u
Input signal as an iddata object or a real matrix.

Dimensions of u must match the number of inputs in nlmodel.

[umin,umax]
Minimum and maximum input values for generating white-noise
input with a magnitude in this rectangular range. The sample
length of this signal is nsample.

nsample
Optional argument when you specify [umin,umax]. Specifies the
length of the white-noise input.

Default: 1024.

See Also idnlarx | idnlhw | findop(idnlarx) | findop(idnlhw) |
linearize(idnlarx) | linearize(idnlhw)

1-551

linapp

How To • “Linear Approximation of Nonlinear Black-Box Models”

1-552

linear

Purpose Class representing linear nonlinearity estimator for nonlinear ARX
models

Syntax lin=linear
lin=linear('Parameters',Par)

Description linear is an object that stores the linear nonlinearity estimator for
estimating nonlinear ARX models.

lin=linear instantiates the linear object.

lin=linear('Parameters',Par) instantiates the linear object and
specifies optional values in the Par structure. For more information
about this structure, see “linear Properties” on page 1-553.

Tips • linear is a linear (affine) function y F x= () , defined as follows:

F x xL d() = +

y is scalar, and x is a 1-by-m vector.

• Use evaluate(lin,x) to compute the value of the function defined
by the linear object lin at x.

• When creating a nonlinear ARX model using the constructor
(idnlarx) or estimator (nlarx), you can specify a linear nonlinearity
estimator using [], instead of entering linear explicitly. For
example:

m=idnlarx(orders,[]);

linear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Parameters values
get(lin)

1-553

linear

% Get value of Parameters property
lin.Parameters

Property Name Description

Parameters Structure containing the following fields:

• LinearCoef: m-by-1 vector L.

• OutputOffset: Scalar d.

Examples Estimate a nonlinear ARX model using the linear estimator with
custom regressors for the following system:

y(t) = a1y(t–1) + a2y(t–2) + a3u(t–1) + a4y(t–1)u(t–2) + a5|u(t)|u(t–3) + a6,

where u is the input and y is the output.

% Create regressors y(t-1), y(t-2) and u(t-1).
orders = [2 1 1];
% Create an idnlarx model using linear estimator with custom regressors.
model = idnlarx(orders, linear, 'InputName', 'u', 'OutputName', 'y',...

'CustomRegressors', {'y(t-1)*u(t-2)','abs(u(t))*u(t-3)'})
% Estimate the model parameters a1, a2, ... a6.
EstimatedModel = nlarx(data, model)

Note The nonlinearity in the model is described by custom regressors
only.

Algorithms When the idnlarx property Focus is 'Prediction', linear uses a
fast, noniterative initialization and iterative search technique for
estimating parameters. In most cases, iterative search requires only a
few iterations.

When the idnlarx property Focus='Simulation', linear uses an
iterative technique for estimating parameters.

1-554

linear

Tutorials “How to Estimate Nonlinear ARX Models at the Command Line”

See Also customreg | nlarx

1-555

linearize(idnlarx)

Purpose Linearize nonlinear ARX model

Syntax SYS = linearize(NLSYS,U0,X0)

Description SYS = linearize(NLSYS,U0,X0) linearizes a nonlinear ARX model
about the specified operating point U0 and X0. The linearization is based
on tangent linearization. For more information about the definition of
states for idnlarx models, see “Definition of idnlarx States” on page
1-363.

Input
Arguments

• NLSYS: idnlarx model.

• U0: Matrix containing the constant input values for the model.

• X0: Model state values. The states of a nonlinear ARX model are
defined by the time-delayed samples of input and output variables.
For more information about the states of nonlinear ARX models, see
the getDelayInfo reference page.

Note To estimate U0 and X0 from operating point specifications, use
the findop(idnlarx) command.

Output
Arguments

• SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an
LTI object.

Algorithms The following equations govern the dynamics of an idnlarx model:

X t AX t Bu t
y t f X u

() () ()
() (,)

+ = +
=

1

where X(t) is a state vector, u(t) is the input, and y(t) is the output. A

and B are constant matrices. u t() is [y(t), u(t)]T.

The output at the operating point is given by

1-556

linearize(idnlarx)

y* = f(X*, u*)

where X* and u* are the state vector and input at the operating point.

The linear approximation of the model response is as follows:

Δ Δ Δ
Δ Δ Δ

X t A B f X t B f B u t

y t f X t f u t
X u

X u

() () () () ()
() () ()

+ = + + +
= +

1 1 1 2

where

• ΔX t X t X t() () ()*= −

• Δu t u t u t() () ()*= −

• Δy t y t y t() () ()*= −

• BU B B
Y
U

B Y B U =
⎡

⎣
⎢

⎤

⎦
⎥ = +[,]1 2 1 2

• f
X

f X UX
X U

= ∂
∂

(,)
*, *

• f
U

f X UU
X U

= ∂
∂

(,)
*, *

Note For linear approximations over larger input ranges, use linapp.
For more information, see the linapp reference page.

Examples Linearize a nonlinear ARX model around an operating point
corresponding to a simulation snapshot at a specific time. Create an
idnlarx model estimated using sample data.

1 Load sample data:

load iddata2

1-557

linearize(idnlarx)

2 Estimate idnlarx model from sample data:

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

3 Plot the response of the model for a step input:

step(nlsys, 20)

The model step response is a steady-state value of 0.8383 at T =
20 seconds.

4 Compute the operating point corresponding to T = 20.

stepinput = iddata([],[zeros(10,1);ones(200,1)],...
nlsys.Ts);

% Compute operating point.
[x,u] = findop(nlsys,'snapshot',20,stepinput);

1-558

linearize(idnlarx)

5 Linearize the model about the operating point corresponding to the
model snapshot at T=20.

sys = linearize(nlsys,u,x)

6 To validate the linear model, apply a small perturbation delta_u to
the steady-state input of the nonlinear model nlsys. If the linear
approximation is accurate, the following should match:

• The response of the nonlinear model y_nl to an input that is the
sum of the equilibrium level and the perturbation delta_u.

• The sum of the response of the linear model to a perturbation
input delta_u and the output equilibrium level.

% Generate a 200-sample step signal with amplitude 0.1
% This is the perturbation signal.
delta_u = [zeros(10,1); 0.1*ones(190,1)];
%
% For a nonlinear system with a steady-state input of 1
% and a steady-state output of 0.8383,
% compute the steady-state response
% y_nl to the perturbed input u_nl. Use equilibrium state
% values x as initial conditions (see Step 4).
u_nl = 1 + delta_u;
y_nl = sim(nlsys,u_nl,x);
%
% Compute response of linear model to perturbation input
% and add it to the output equilibrium level:
y_lin = 0.8383 + lsim(sys,delta_u);
%
% Compare the response of nonlinear and linear models:
time = [0:0.1:19.9]';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response',...

'Linear response about op. pt.')
title(['Nonlinear and linear model response'...

1-559

linearize(idnlarx)

' for small step input'])

The linearized model response tracks the nonlinear model output.

See Also findop(idnlarx) | getDelayInfo | idnlarx | linapp

How To • “Linear Approximation of Nonlinear Black-Box Models”

1-560

linearize(idnlhw)

Purpose Linearize Hammerstein-Wiener model

Syntax SYS = linearize(NLSYS,U0)
SYS = linearize(NLSYS,U0,X0)

Description SYS = linearize(NLSYS,U0) linearizes a Hammerstein-Wiener
model around the equilibrium operating point. When using this
syntax, equilibrium state values for the linearization are calculated
automatically using U0.

SYS = linearize(NLSYS,U0,X0) linearizes the idnlhw model NLSYS
around the operating point specified by the input U0 and state values
X0. In this usage, X0 need not contain equilibrium state values. For
more information about the definition of states for idnlhw models, see
“idnlhw States” on page 1-397.

The output is a linear model that is the best linear approximation for
inputs that vary in a small neighborhood of a constant input u(t) = U.
The linearization is based on tangent linearization.

Input
Arguments

• NLSYS: idnlhw model.

• U0: Matrix containing the constant input values for the model.

• X0: Operating point state values for the model.

Note To estimate U0 and X0 from operating point specifications, use
the findop(idnlhw) command.

Output
Arguments

• SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an
LTI object.

Algorithms The idnlhw model structure represents a nonlinear system using a
linear system connected in series with one or two static nonlinear
systems. For example, you can use a static nonlinearity to simulate

1-561

linearize(idnlhw)

saturation or dead-zone behavior. The following figure shows the
nonlinear system as a linear system that is modified by static input
and output nonlinearities, where function f represents the input
nonlinearity, g represents the output nonlinearity, and [A,B,C,D]
represents a state-space parameterization of the linear model.

The following equations govern the dynamics of an idnlhw model:

v(t) = f(u(t))

X(t+1) = AX(t)+Bv(t)

w(t) = CX(t)+Dv(t)

y(t) = g(w(t))

where

• u is the input signal

• v and w are intermediate signals (outputs of the input nonlinearity
and linear model respectively)

• y is the model output
The linear approximation of the Hammerstein-Wiener model around an
operating point (X*, u*) is as follows:

Δ Δ Δ
Δ Δ Δ

X t A X t Bf u t

y t g C X t g Df u t
u

w w u

() () ()
() () ()

+ = +
≈ +

1

where

• ΔX t X t X t() () ()*= −

• Δu t u t u t() () ()*= −

• Δy t y t y t() () ()*= −

1-562

linearize(idnlhw)

• f
u

f uu
u u

= ∂
∂ =

()
*

• g
w

g ww
w w

= ∂
∂ =

()
where y is the output of the model corresponding to input u* and

state vector X*, v* = f(u*), and w* is the response of the linear model
for input v* and state X*.

Note For linear approximations over larger input ranges, use linapp.
For more information, see the linapp reference page.

Examples Linearize a Hammerstein-Wiener model with two inputs at an
equilibrium point, and compare the linearized model response to the
original model response.

1 Load the sample data to create iddata object z.

load iddata2
load iddata3
z2.Ts = z3.Ts;
z = [z2(1:300),z3]; % Estimation data

2 Estimate an idnlhw model using a combination of pwlinear, poly1d,
sigmoidnet and customnet nonlinearities.

orders = [2 2 3 4 1 5; 2 5 1 2 5 2];
nlsys = nlhw(z,orders,[pwlinear;poly1d],...

[sigmoidnet;customnet(@gaussunit)]);

3 Linearize the model at an equilibrium operating point corresponding
to input levels of 10 and 5 respectively. To do this you first compute
the operating point using findop, then linearize the model around
the computed input and state values.

1-563

linearize(idnlhw)

[x,u_s,report] = findop(nlsys,'steady',[10,5]);
sys = linearize(nlsys,u_s,x);
% sys is a state-space model

4 To validate the linear model, apply a small perturbation delta_u to
the steady-state input of the nonlinear model nlsys. If the linear
approximation is accurate, the following should match:

• The response of the nonlinear model y_nl to an input that is the
sum of the equilibrium level and the perturbation delta_u.

• The sum of the response of the linear model to a perturbation
input delta_u and the output equilibrium level.

% Generate a 300-sample step signal with amplitude 0.1
% This is the perturbation input signal.
delta_u = [zeros(20,2); 0.1*ones(280,2)];
%
% Compute the response of the linear model delta_y_lin
% to the perturbed input signal delta_u:
delta_y_lin = lsim(sys,delta_u);
%
% For the nonlinear system with a steady-state input u_s,
% compute the steady-state output y_s from the
% SignalLevels field of the findop report (see Step 3):
y_s = report.SignalLevels.Output;
%
% Compute the perturbed input to the nonlinear system
% as the sum of the steady-state input u_s and
% the perturbation signal delta_u:
u_nl = bsxfun(@plus,delta_u,u_s);

% Compute the steady-state response of the
% nonlinear system y_nl to the perturbed input u_nl.
% Use equilibrium state values x as initial conditions.
y_nl = sim(nlsys,u_nl,x);
%
% Compare the response of nonlinear and linear models:

1-564

linearize(idnlhw)

time = (0:299)';
subplot(211)
plot(time,y_nl(:,1),time,delta_y_lin(:,1)+y_s(1),'.')
legend('Nonlinear response',...

'Linear response about op. pt.')
title('Comparison of signal values for output 1')

subplot(212)
plot(time,y_nl(:,2),time,delta_y_lin(:,2)+y_s(2),'.')
legend('Nonlinear response',...

'Linear response about op. pt.')
title('Comparison of signal values for output 2')

See Also findop(idnlhw) | idnlhw | linapp

1-565

linearize(idnlhw)

How To • “Linear Approximation of Nonlinear Black-Box Models”

1-566

lsim

Purpose Simulate time response of dynamic system to arbitrary inputs

Syntax lsim
lsim(sys,u,t)
lsim(sys,u,t,x0)
lsim(sys,u,t,x0,'zoh')
lsim(sys,u,t,x0,'foh')
lsim(sys)

Description lsim simulates the (time) response of continuous or discrete linear
systems to arbitrary inputs. When invoked without left-hand
arguments, lsim plots the response on the screen.

lsim(sys,u,t) produces a plot of the time response of the dynamic
system model sys to the input time history t,u. The vector t specifies
the time samples for the simulation (in system time units, specified in
the TimeUnit property of sys), and consists of regularly spaced time
samples.

t = 0:dt:Tfinal

The matrix u must have as many rows as time samples (length(t))
and as many columns as system inputs. Each row u(i,:) specifies the
input value(s) at the time sample t(i).

The LTI model sys can be continuous or discrete, SISO or MIMO. In
discrete time, u must be sampled at the same rate as the system (t is
then redundant and can be omitted or set to the empty matrix). In
continuous time, the time sampling dt=t(2)-t(1) is used to discretize
the continuous model. If dt is too large (undersampling), lsim issues a
warning suggesting that you use a more appropriate sample time, but
will use the specified sample time. See “Algorithms” on page 1-570
for a discussion of sample times.

lsim(sys,u,t,x0) further specifies an initial condition x0 for the
system states. This syntax applies only to state-space models.

lsim(sys,u,t,x0,'zoh') or lsim(sys,u,t,x0,'foh') explicitly
specifies how the input values should be interpolated between samples

1-567

lsim

(zero-order hold or linear interpolation). By default, lsim selects the
interpolation method automatically based on the smoothness of the
signal U.

Finally,

lsim(sys1,sys2,...,sysN,u,t)

simulates the responses of several LTI models to the same input history
t,u and plots these responses on a single figure. As with bode or plot,
you can specify a particular color, linestyle, and/or marker for each
system, for example,

lsim(sys1,'y:',sys2,'g--',u,t,x0)

The multisystem behavior is similar to that of bode or step.

When invoked with left-hand arguments,

[y,t] = lsim(sys,u,t)
[y,t,x] = lsim(sys,u,t) % for state-space models only
[y,t,x] = lsim(sys,u,t,x0) % with initial state

return the output response y, the time vector t used for simulation,
and the state trajectories x (for state-space models only). No plot is
drawn on the screen. The matrix y has as many rows as time samples
(length(t)) and as many columns as system outputs. The same holds
for x with "outputs" replaced by states.

lsim(sys) opens the Linear Simulation Tool GUI. For more
information about working with this GUI, see Working with the Linear
Simulation Tool.

Examples Example 1

Simulate and plot the response of the system

1-568

lsim

H s

s s

s s
s

s s

() =

+ +
+ +
−

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 5 1

2 3
1

5

2

2

2

to a square wave with period of four seconds. First generate the square
wave with gensig. Sample every 0.1 second during 10 seconds:

[u,t] = gensig('square',4,10,0.1);

Then simulate with lsim.

H = [tf([2 5 1],[1 2 3]) ; tf([1 -1],[1 1 5])]
lsim(H,u,t)

1-569

lsim

Example 2

Simulate the response of an identified linear model using the same
input signal as the one used for estimation and the initial states
returned by the estimation command.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotor
z = iddata(y, u, 0.1, 'Name', 'DC-motor');

[sys, x0] = n4sid(z, 4);
[y,t,x] = lsim(sys, z.InputData, [], x0);

Compare the simulated response y to measured response z.OutputData.

plot(t,z.OutputData,'k', t,y, 'r')
legend('Measured', 'Simulated')

Algorithms Discrete-time systems are simulated with ltitr (state space) or filter
(transfer function and zero-pole-gain).

Continuous-time systems are discretized with c2d using either the
'zoh' or 'foh' method ('foh' is used for smooth input signals and
'zoh' for discontinuous signals such as pulses or square waves). The
sampling period is set to the spacing dt between the user-supplied time
samples t.

The choice of sampling period can drastically affect simulation results.
To illustrate why, consider the second-order model

H s
s s

() , .=
+ +

=

2

2 22
62 83

To simulate its response to a square wave with period 1 second, you can
proceed as follows:

w2 = 62.83^2
h = tf(w2,[1 2 w2])
t = 0:0.1:5; % vector of time samples
u = (rem(t,1)>=0.5); % square wave values

1-570

lsim

lsim(h,u,t)

lsim evaluates the specified sample time, gives this warning

Warning: Input signal is undersampled. Sample every 0.016 sec or

faster.

and produces this plot.

To improve on this response, discretize H(s) using the recommended
sampling period:

dt=0.016;
ts=0:dt:5;
us = (rem(ts,1)>=0.5)
hd = c2d(h,dt)
lsim(hd,us,ts)

1-571

lsim

This response exhibits strong oscillatory behavior hidden from the
undersampled version.

See Also gensig | impulse | initial | ltiview | step | sim

1-572

lsiminfo

Purpose Compute linear response characteristics

Syntax S = lsiminfo(y,t,yfinal)
S = lsiminfo(y,t)
S = lsiminfo(...,'SettlingTimeThreshold',ST)

Description S = lsiminfo(y,t,yfinal) takes the response data (t,y) and a
steady-state value yfinal and returns a structure S containing the
following performance indicators:

• SettlingTime — Settling time

• Min — Minimum value of Y

• MinTime— Time at which the min value is reached

• Max — Maximum value of Y

• MaxTime— Time at which the max value is reached

For SISO responses, t and y are vectors with the same length NS. For
responses with NY outputs, you can specify y as an NS-by-NY array
and yfinal as a NY-by-1 array. lsiminfo then returns an NY-by-1
structure array S of performance metrics for each output channel.

S = lsiminfo(y,t) uses the last sample value of y as steady-state
value yfinal. s = lsiminfo(y) assumes t = 1:NS.

S = lsiminfo(...,'SettlingTimeThreshold',ST) lets you specify
the threshold ST used in the settling time calculation. The response
has settled when the error |y(t) - yfinal| becomes smaller than a
fraction ST of its peak value. The default value is ST=0.02 (2%).

Examples Create a fourth order transfer function and ascertain the response
characteristics.

sys = tf([1 -1],[1 2 3 4]);
[y,t] = impulse(sys);
s = lsiminfo(y,t,0) % final value is 0
s =

1-573

lsiminfo

SettlingTime: 22.8626
Min: -0.4270

MinTime: 2.0309
Max: 0.2845

MaxTime: 4.0619

See Also lsim | impulse | initial | stepinfo

1-574

lsimplot

Purpose Simulate response of dynamic system to arbitrary inputs and return
plot handle

Syntax h = lsimplot(sys)
lsimplot(sys1,sys2,...)
lsimplot(sys,u,t)
lsimplot(sys,u,t,x0)
lsimplot(sys1,sys2,...,u,t,x0)
lsimplot(AX,...)
lsimplot(..., plotoptions)
lsimplot(sys,u,t,x0,'zoh')
lsimplot(sys,u,t,x0,'foh')

Description h = lsimplot(sys) opens the Linear Simulation Tool for the dynamic
system model sys, which enables interactive specification of driving
input(s), the time vector, and initial state. It also returns the plot
handle h. You can use this handle to customize the plot with the
getoptions and setoptions commands. Type

help timeoptions

for a list of available plot options.

lsimplot(sys1,sys2,...) opens the Linear Simulation Tool for
multiple models sys1,sys2,.... Driving inputs are common to all
specified systems but initial conditions can be specified separately for
each.

lsimplot(sys,u,t) plots the time response of the model sys to
the input signal described by u and t. The time vector t consists of
regularly spaced time samples (in system time units, specified in the
TimeUnit property of sys). For MIMO systems, u is a matrix with as
many columns as inputs and whose ith row specifies the input value
at time t(i). For SISO systems u can be specified either as a row or
column vector. For example,

t = 0:0.01:5;
u = sin(t);

1-575

lsimplot

lsimplot(sys,u,t)

simulates the response of a single-input model sys to the input
u(t)=sin(t) during 5 seconds.

For discrete-time models, u should be sampled at the same rate as sys
(t is then redundant and can be omitted or set to the empty matrix).

For continuous-time models, choose the sampling period t(2)-t(1)
small enough to accurately describe the input u. lsim issues a warning
when u is undersampled, and hidden oscillations can occur.

lsimplot(sys,u,t,x0) specifies the initial state vector x0 at time t(1)
(for state-space models only). x0 is set to zero when omitted.

lsimplot(sys1,sys2,...,u,t,x0) simulates the responses of multiple
LTI models sys1,sys2,... on a single plot. The initial condition x0 is
optional. You can also specify a color, line style, and marker for each
system, as in

lsimplot(sys1,'r',sys2,'y--',sys3,'gx',u,t)

lsimplot(AX,...) plots into the axes with handle AX.

lsimplot(..., plotoptions) plots the initial condition response with
the options specified in plotoptions. Type

help timeoptions

for more detail.

For continuous-time models, lsimplot(sys,u,t,x0,'zoh') or
lsimplot(sys,u,t,x0,'foh') explicitly specifies how the input values
should be interpolated between samples (zero-order hold or linear
interpolation). By default, lsimplot selects the interpolation method
automatically based on the smoothness of the signal u.

See Also getoptions | lsim | setoptions

1-576

mag2db

Purpose Convert magnitude to decibels (dB)

Syntax ydb = mag2db(y)

Description ydb = mag2db(y) returns the corresponding decibel (dB) value ydb for a
given magnitude y. The relationship between magnitude and decibels
is ydb = 20 log10(y).

See Also db2mag

1-577

merge (iddata)

Purpose Merge data sets into iddata object

Syntax dat = merge(dat1,dat2,....,datN)

Description dat collects the data sets in dat1, ...,datN into one iddata object,
with several experiments. The number of experiments in dat will be
the sum of the number of experiments in datk. For the merging to be
allowed, a number of conditions must be satisfied:

• All of datk must have the same number of input channels, and the
InputNames must be the same.

• All of datk must have the same number of output channels, and the
OutputNames must be the same. If some input or output channel is
lacking in one experiment, it can be replaced by a vector of NaNs to
conform with these rules.

• If the ExperimentNames of datk have been specified as something
other than the default 'Exp1', 'Exp2', etc., they must all be unique.
If default names overlap, they are modified so that dat will have a
list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input
properties (Period, InterSample) might be different in the different
experiments.

You can retrieve the individual experiments by using the command
getexp. You can also retrieve them by subreferencing with a fourth
index.

dat1 = dat(:,:,:,ExperimentNumber)

or

dat1 = dat(:,:,:,ExperimentName)

Storing multiple experiments as one iddata object can be very useful
for handling experimental data that has been collected on different

1-578

merge (iddata)

occasions, or when a data set has been split up to remove “bad” portions
of the data. All the toolbox routines accept multiple-experiment data.

Examples Bad portions of data have been detected around sample 500 and
between samples 720 to 730. Cut out these bad portions and form
a multiple-experiment data set that can be used to estimate models
without the bad data destroying the estimate.

dat = merge(dat(1:498),dat(502:719),dat(731:1000))
m = pem(dat)

Use the first two parts to estimate the model and the third one for
validation.

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

See also iddemo #8.

See Also iddata | getexp | merge

1-579

merge

Purpose Merge estimated models

Syntax m = merge(m1,m2,....,mN)
[m,tv] = merge(m1,m2)

Description The models m1,m2,...,mN must all be of the same structure, just
differing in parameter values and covariance matrices. Then m is the
merged model, where the parameter vector is a statistically weighted
mean (using the covariance matrices to determine the weights) of the
parameters of mk.

When two models are merged,

[m, tv] = merge(m1,m2)

returns a test variable tv. It is χ2 distributed with n degrees of freedom,
if the parameters of m1 and m2 have the same means. Here n is the
length of the parameter vector. A large value of tv thus indicates that
it might be questionable to merge the models.

For idfrd models, merge is a statistical average of two responses in
the individual models, weighted using inverse variances. You can only
merge two idfrd models with responses at the same frequencies and
nonzero covariances.

Merging models is an alternative to merging data sets and estimating a
model for the merged data.

load iddata1 z1;
load iddata2 z2;
m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

and

mb = arx(merge(z1,z2),[2 3 4]);

1-580

merge

result in models ma and mb that are related and should be close. The
difference is that merging the data sets assumes that the signal-to-noise
ratios are about the same in the two experiments. Merging the models
allows one model to be much more uncertain, for example, due to more
disturbances in that experiment. If the conditions are about the same,
we recommend that you merge data rather than models, since this is
more efficient and typically involves better conditioned calculations.

1-581

midprefs

Purpose Set folder for storing idprefs.mat containing GUI startup information

Syntax midprefs
midprefs(path)

Description The graphical user interface ident allows a large number of variables
for customized choices. These include the window layout, the default
choices of plot options, and names and directories of the four most
recent sessions with ident. This information is stored in the file
idprefs.mat, which should be placed on the user’s MATLABPATH. The
default, automatic location for this file is in the same folder as the
user’s startup.m file.

midprefs is used to select or change the folder where you store
idprefs.mat. Either type midprefs and follow the instructions, or
give the folder name as the argument. Include all folder delimiters, as
in the PC case

midprefs('c:\matlab\toolbox\local\')

or in the UNIX® case

midprefs('/home/ljung/matlab/')

See Also ident

1-582

misdata

Purpose Reconstruct missing input and output data

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

Description Data is time-domain input-output data in the iddata object format.
Missing data samples (both in inputs and in outputs) are entered as
NaNs.

Datae is an iddata object where the missing data has been replaced
by reasonable estimates.

Model is any linear identified model (idtf, idproc, idgrey, idpoly,
idss) used for the reconstruction of missing data.

If no suitable model is known, it is estimated in an iterative fashion
using default order state-space models.

Maxiter is the maximum number of iterations carried out (the default
is 10). The iterations are terminated when the difference between two
consecutive data estimates differs by less than Tol%. The default value
of Tol is 1.

Algorithms For a given model, the missing data is estimated as parameters so as to
minimize the output prediction errors obtained from the reconstructed
data. See Section 14.2 in Ljung (1999). Treating missing outputs as
parameters is not the best approach from a statistical point of view, but
is a good approximation in many cases.

When no model is given, the algorithm alternates between
estimating missing data and estimating models, based on the current
reconstruction.

See Also arx | advice | pexcit | tfest

1-583

n4sid

Purpose Estimate state-space model using a subspace method.

Syntax sys = n4sid(data,nx)
sys = n4sid(data,nx,Name,Value)
sys = n4sid(___ ,opt)
[sys,x0] = n4sid(___)

Description sys = n4sid(data,nx) estimates an nx order state-space model, sys,
using measured input-output data, data.

sys is an idss model representing the system:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

A,B,C, and D are state-space matrices. K is the disturbance matrix. u(t)
is the input, y(t) is the output, x(t) is the vector of nx states and e(t)
is the disturbance.

All the entries of the A, B, C and K matrices are considered free
estimation parameters. D is fixed to zero, meaning that there is no
feedthrough, except for static systems (nx=0).

sys = n4sid(data,nx,Name,Value) specifies additional attributes
of the state-space structure using one or more Name,Value pair
arguments.

sys = n4sid(___ ,opt) specifies estimation options, opt, that
configure the initial states, estimation objective, and subspace
algorithm related choices to be used for estimation.

[sys,x0] = n4sid(___) also returns the estimated initial state.

Input
Arguments

data

Estimation data.

For time domain estimation, data is an iddata object containing the
input and output signal values.

1-584

n4sid

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — ‘Frequency’

For multiexperiment data, the sample times and intersample behavior
of all the experiments must match.

You can only estimate continuous-time models using continuous-time
frequency domain data. You can estimate both continuous-time and
discrete-time models (of sample time matching that of data) using
time-domain data and discrete-time frequency domain data.

nx

Order of estimated model.

Specify nx as a positive integer. nx may be a scalar or a vector. If nx
is a vector, then n4sid creates a plot which you can use to choose a
suitable model order. The plot shows the Hankel singular values for
models of different orders. States with relatively small Hankel singular
values can be safely discarded. A default choice is suggested in the plot.

You can also specify nx as 'best', in which case the optimal order is
automatically chosen from nx = 1,..,10.

opt

Estimation options.

opt is an options set, created using n4sidOptions, which specifies
options including:

• Estimation objective

• Handling of initial conditions

1-585

n4sid

• Subspace algorithm related choices

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Ts’

Sampling time. For continuous-time models, use Ts = 0. For
discrete-time models, specify Ts as a positive scalar whose value is
equal to that of the data sampling time.

Default: data.Ts

’Form’

Type of canonical form of sys.

Form is a string that requires one of the following values:

• 'modal' — Obtainsys in modal form.

• 'companion' — Obtain sys in companion form.

• 'free'— All entries of the A, B and C matrices are estimated.

• 'canonical'— Obtain sys in observable canonical form [1].

Default: 'free'

’Feedthrough’

Logical specifying direct feedthrough from input to output.

Feedthrough is a logical vector of length of length Nu, where Nu is
the number of inputs.

If Feedthrough is specified as a logical scalar, this value is applied to
all the inputs.

1-586

n4sid

Default: false(1,Nu) (Nu is the number of inputs). If the model
has no states, then Feedthrough is true(1,Nu).

’DisturbanceModel’

Specifies if the noise component, the K matrix, is to be estimated.

DisturbanceModel requires one of the following values:

• 'none' — Noise component is not estimated. The value of the K
matrix, is fixed to zero value.

• 'estimate'— The K matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency domain
data.

Default: 'estimate' (For time domain data)

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

Output
Arguments

sys

Identified state-space model.

sys is an idss model, which encapsulates the identified state-space
model.

1-587

n4sid

x0

Initial states computed during the estimator of sys.

If data contains multiple experiments, then x0 is an array with each
column corresponding to an experiment.

Definitions Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically
1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues.
However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (, ,) 1 2± j , the modal A
matrix is of the form

1

2

0 0 0
0 0
0 0
0 0 0

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Companion Form

In the companion realization, the characteristic polynomial of the
system appears explicitly in the far-right column of the A matrix. For a
system with characteristic polynomial

p s s s sn n
n n() = + + + +−
− 1

1
1

the corresponding companion A matrix is

1-588

n4sid

A

n

n

=

−
− −

−
−

⎡

⎣

⎢
⎢
⎢

0 0 0
1 0 0 0 1
0 1 0

0
0 1 0
0 0 1

2

1

.. ..
..
.

. .
. .
.. ..

: :
: : :⎢⎢

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The companion transformation requires that the system be controllable
from the first input. The companion form is poorly conditioned for most
state-space computations; so avoid using it if possible.

Examples Estimate State-Space Model and Specify Estimation Options

Load estimation data.

load iddata2 z2;

Specify the estimation options.

opt = n4sidOptions('Focus','simulation','Display','on');

Estimate the model.

nx = 3;

sys = n4sid(z2,nx,opt);

sys is a third-order, state-space model.

Estimate a Canonical-Form, Continuous-Time Model

Estimate a continuous-time, canonical-form model.

Load estimation data.

load iddata1 z1;

Specify the estimation options.

1-589

n4sid

opt = n4sidOptions('Focus','simulation','Display','on');

Estimate the model.

nx = 2;

sys = n4sid(z1,nx,'Ts',0,'Form','canonical',opt);

sys is a second-order, continuous-time, state-space model in the
canonical form.

References [1] Ljung, L. System Identification: Theory for the User, Appendix 4A,
Second Edition, pp. 132–134. Upper Saddle River, NJ: Prentice Hall
PTR, 1999.

[2] van Overschee, P., and B. De Moor. Subspace Identification of
Linear Systems: Theory, Implementation, Applications. Springer
Publishing: 1996.

[3] Verhaegen, M. "Identification of the deterministic part of MIMO
state space models." Automatica, 1994, Vol. 30, pp. 61—74.

[4] Larimore, W.E. "Canonical variate analysis in identification,
filtering and adaptive control." Proceedings of the 29th IEEE Conference
on Decision and Control, 1990, pp. 596–604.

See Also n4sidOptions | idss | ssest | tfest | procest | polyest |
iddata | idfrd | idgrey | canon | pem

1-590

n4sidOptions

Purpose Option set for n4sid

Syntax opt = n4sidOptions
opt = n4sidOptions(Name,Value)

Description opt = n4sidOptions creates the default options set for n4sid.

opt = n4sidOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialState’

Specify handling of initial states during estimation.

InitialState requires one of the following values:

• 'zero' — The initial state is set to zero.

• 'estimate' — The initial state is treated as an independent
estimation parameter.

Default: 'estimate'

’N4Weight’

Weighting scheme used for singular-value decomposition by the N4SID
algorithm.

'N4Weight' requires one of the following values:

• 'MOESP'— Uses the MOESP algorithm by Verhaegen [2].

• 'CVA'— Uses the Canonical Variable Algorithm by Larimore [1].

1-591

n4sidOptions

• 'auto'— The estimating function chooses between the MOESP and
CVA algorithms.

Default: 'auto'

’N4Horizon’

Forward- and backward-prediction horizons used by the N4SID
algorithm.

'N4Horizon' requires one of the following values:

• A row vector with three elements — [r sy su], where r is the
maximum forward prediction horizon, using up to r step-ahead
predictors. sy is the number of past outputs, and su is the number of
past inputs that are used for the predictions. See pages 209 and 210
in [3] for more information. These numbers can have a substantial
influence on the quality of the resulting model, and there are no
simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix
means that each row of 'N4Horizon' is tried, and the value that
gives the best (prediction) fit to data is selected. k is the number of
guesses of [r sy su] combinations. If you specify N4Horizon as a
single column, r = sy = su is used.

• 'auto'— The software uses an Akaike Information Criterion (AIC)
for the selection of sy and su.

Default: auto

’Focus’

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

1-592

n4sidOptions

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction' — Automatically calculates the weighting function
as a product of the input spectrum and the inverse of the noise
model. The weighting function minimizes the one-step-ahead
prediction, which typically favors fitting small time intervals (higher
frequency range). From a statistical-variance point of view, this
weighting function is optimal. However, this method neglects the
approximation aspects (bias) of the fit. Thus, the method may not
result in a stable model. Specify Focus as 'stability' when you
want to ensure a stable model.

• 'stability' — Same as 'prediction', but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

1-593

n4sidOptions

This format calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

1-594

n4sidOptions

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Specifies criterion used during minimization.

OutputWeight can have the following values:

• 'noise'— Minimize det(’*)E E , where E represents the prediction
error. This choice is optimal in a statistical sense and leads to the
maximum likelihood estimates in case no data is available about the
variance of the noise. This option uses the inverse of the estimated
noise variance as the weighting function.

1-595

n4sidOptions

• positive semidefinite symmetric matrix (W) — Minimize the trace of
the weighted prediction error matrix trace(E'*E*W). E is the matrix
of prediction errors, with one column for each output. W is the positive
semidefinite symmetric matrix of size equal to the number of outputs.
Use W to specify the relative importance of outputs in multiple-input,
multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

• []— The software chooses between the 'noise' or using the identity
matrix for W.

Default: []

’Advanced’

Advanced is a structure with the field MaxSize. MaxSize specifies the
maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000

Output
Arguments

opt

Option set containing the specified options for n4sid.

Examples Create Default Options Set for State-Space Estimation Using
Subspace Method

opt = n4sidOptions;

Specify Options for State-Space Estimation Using Subspace
Method

Create an options set for n4sid using the 'zero' option to initialize
the state. Set the Display to 'on'.

opt = n4sidOptions('InitialState','zero','Display','on');

1-596

n4sidOptions

Alternatively, use dot notation to set the values of opt.

opt = n4sidOptions;
opt.InitialState = 'zero';
opt.Display = 'on';

References [1] Larimore, W.E. “Canonical variate analysis in identification,
filtering and adaptive control.” Proceedings of the 29th IEEE Conference
on Decision and Control, pp. 596–604, 1990.

[2] Verhaegen, M. “Identification of the deterministic part of MIMO
state space models.” Automatica, Vol. 30, 1994, pp. 61–74.

[3] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

See Also n4sid | idpar | idfilt

1-597

ndims

Purpose Query number of dimensions of dynamic system model or model array

Syntax n = ndims(sys)

Description n = ndims(sys) is the number of dimensions of a dynamic system
model or a model array sys. A single model has two dimensions (one for
outputs, and one for inputs). A model array has 2 + p dimensions, where
p ≥ 2 is the number of array dimensions. For example, a 2-by-3-by-4
array of models has 2 + 3 = 5 dimensions.

ndims(sys) = length(size(sys))

Examples sys = rss(3,1,1,3);
ndims(sys)
ans =

4

ndims returns 4 for this 3-by-1 array of SISO models.

See Also size

1-598

neuralnet

Purpose Class representing neural network nonlinearity estimator for nonlinear
ARX models

Syntax net_estimator = neuralnet(Network)

Description neuralnet is the class that encapsulates the neural network
nonlinearity estimator. A neuralnet object lets you use networks,
created using Neural Network Toolbox™ software, in nonlinear ARX
models.

The neural network nonlinearity estimator defines a nonlinear function

y F x= () , where F is a multilayer feed-forward (static) neural network,
as defined in the Neural Network Toolbox software. y is a scalar and
x is an m-dimensional row vector.

You create multi-layer feed-forward neural networks using
Neural Network Toolbox commands such as feedforwardnet,
cascadeforwardnet and linearlayer. When you create the network:

• Designate the input and output sizes to be unknown by leaving them
at the default value of zero (recommended method). When estimating
a nonlinear ARX model using the nlarx command, the software
automatically determines the input-output sizes of the network.

• Initialize the sizes manually by setting input and output ranges to
m-by-2 and 1-by-2 matrices, respectively, where m is the number of
nonlinear ARX model regressors and the range values are minimum
and maximum values of regressors and output data, respectively.

See “Examples” on page 1-601 for more information.

Use evaluate(net_estimator,x) to compute the value of the function
defined by the neuralnet object net_estimator at input value x.
When used for nonlinear ARX model estimation, x represents the model
regressors for the output for which the neuralnet object is assigned as
the nonlinearity estimator.

You cannot use neuralnet when Focus property of the idnlarx model
is 'Simulation' because this nonlinearity estimator is considered to

1-599

neuralnet

be nondifferentiable for estimation. Minimization of simulation error
requires differentiable nonlinear functions.

Construction net_estimator = neuralnet(Network) creates a neural network
nonlinearity estimator based on the feed-forward (static) network
object Network created using Neural Network Toolbox commands
feedforwardnet, cascadeforwardnet, and linearlayer. Network
must represent a static mapping between the inputs and output without
I/O delays or feedback. The number of outputs of the network, if
assigned, must be one. For a multiple-output nonlinear ARX models,
create a separate neuralnet object for each output—that is, each
estimator must represent a single-output network object.

Properties

Network Neural network object, typically created using the
Neural Network Toolbox commands feedforwardnet,
cascadeforwardnet, and linearlayer.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List Network property value
get(n)
n.Network

You can also use the set function to set the value of particular
properties. For example:

set(d, 'Network', net_obj)

The first argument to set must be the name of a MATLAB variable.

1-600

neuralnet

Examples Create a neural network nonlinearity estimator using a feed-forward
neural network with three hidden layers, transfer functions of types
logsig, radbas, and purelinand unknown input and output sizes:

% Create a neural network.
net = feedforwardnet([4 6 1]);
net.layers{1}.transferFcn = 'logsig';
net.layers{2}.transferFcn = 'radbas';
net.layers{3}.transferFcn = 'purelin';
% View the network diagram.
view(net)
% Create a neuralnet estimator.
net_estimator = neuralnet(net);

Create a single-layer, cascade-forward network with unknown input and
output sizes and use this network for nonlinear ARX model estimation:

1 Create a cascade-forward neural network with 20 neurons and
unknown input-output sizes.

net = cascadeforwardnet(20);

2 Create a neural network nonlinearity estimator.

net_estimator = neuralnet(net);

3 Estimate nonlinear ARX model.

% Create estimation data.
load twotankdata
Data = iddata(y, u, 0.2);
% Estimate model.
Model = nlarx(Data, [2 2 1], net_estimator);
% Compare model response to measured output signal.
compare(Data, Model)

1-601

neuralnet

Initialize the input-output sizes of a two-layer feed-forward neural
network based on estimation data and use this network for nonlinear
ARX estimation:

1 Create estimation data.

% Load estimation data.
load iddata7 z7
% Use only first 200 samples for estimation.
z7 = z7(1:200);

2 Create a template Nonlinear ARX model with no nonlinearity.

model = idnlarx([4 4 4 1 1], []);

This model has six regressors and is simply used to define the
regressors. The range of regressor values for input-output data in z7
is then used to set the input ranges in the neural network object, as
shown in the next steps.

3 Obtain the model regressor values.

R = getreg(model, 'all', z7);

R is a matrix of regressor values for z7.

4 Create a two-layer, feed-forward neural network and initialize the
network input and output dimensions to 2 and 1, respectively.

% Use 5 neurons for first layer and 7 for second layer.
net = feedforwardnet([5 7]);
% Determine input range.
InputRange = [min(R); max(R)].';
% Initialize input dimensions of estimator.
net.inputs{1}.range = InputRange;
% Determine output range.
OutputRange = [min(z7.OutputData), max(z7.OutputData)];
% Initialize output dimensions of estimator.

1-602

neuralnet

net.outputs{net.outputConnect}.range = OutputRange;
% Create neuralnet estimator.
net_estimator = neuralnet(net);

5 Specify the nonlinearity estimator in the model.

model.Nonlinearity = net_estimator;

6 Estimate the parameters of the network to minimize the prediction
error between data and model.

% Estimate model.
model = nlarx(z7, model);
% Compare model's predicted response to measured output signal.
compare(z7(1:100), model,1)

Algorithms The nlarx command uses the train method of the network object,
defined in the Neural Network Toolbox software, to compute the
network parameter values.

See Also nlarx | sigmoidnet | wavenet | treepartition | customnet |
feedforwardnet | cascadeforwardnet | linearlayer

Tutorials • “Identifying Nonlinear ARX Models”

1-603

nkshift

Purpose Shift data sequences

Syntax Datas = nkshift(Data,nk)

Description Data contains input-output data in the iddata format.

nk is a row vector with the same length as the number of input channels
in Data.

Datas is an iddata object where the input channels in Data have been
shifted according to nk. A positive value of nk(ku) means that input
channel number ku is delayed nk(ku) samples.

nkshift supports both frequency- and time-domain data. For
frequency-domain data it multiplies with einkωT to obtain the same effect
as shifting in the time domain. For continuous-time frequency-domain
data (Ts = 0), nk should be interpreted as the shift in seconds.

nkshift lives in symbiosis with the InputDelay property of linear
identified models:

m1 = ssest(dat,4,'InputDelay',nk)

is related to

m2 = ssest(nkshift(dat,nk),4);

such that m1 and m2 are the same models, but m1 stores the delay
information and uses this information when computing the frequency
response, for example. When using m2, the delay value must be
accounted for separately when computing time and frequency responses.

See Also idpoly | absorbDelay | delayest | idss

1-604

nlarx

Purpose Estimate nonlinear ARX model

Syntax m = nlarx(data,[na nb nk])
m = nlarx(data,[na nb nk],Nonlinearity)
m = nlarx(data,[na nb nk],'Name',Value)
m = nlarx(data,LinModel)
m = nlarx(data,LinModel,Nonlinearity)
m = nlarx(data,LinModel,Nonlinearity,'PropertyName',

PropertyValue)

Description m = nlarx(data,[na nb nk]) creates and estimates a nonlinear ARX
model using a default wavelet network as its nonlinearity estimator.
data is an iddata object. na, nb, and nk are positive integers that
specify the model orders and delays.

m = nlarx(data,[na nb nk],Nonlinearity) specifies a nonlinearity
estimator Nonlinearity, as a nonlinearity estimator object or string
representing the nonlinearity estimator type.

m = nlarx(data,[na nb nk],'Name',Value) constructs and
estimates the model using options specified as idnlarx model property
or idnlarx algorithm property name and value pairs. Specify Name
inside single quotes.

m = nlarx(data,LinModel) creates and estimates a nonlinear ARX
model using a linear model (in place of [na nb nk]), and a wavelet
network as its nonlinearity estimator. LinModel is a discrete time
input-output polynomial model of ARX structure (idpoly). LinModel
sets the model orders, input delay, input-output channel names and
units, sample time, and time unit of m, and the polynomials initialize
the linear function of the nonlinearity estimator.

m = nlarx(data,LinModel,Nonlinearity) specifies a nonlinearity
estimator Nonlinearity.

m =
nlarx(data,LinModel,Nonlinearity,'PropertyName',PropertyValue),
constructs and estimates the model using options specified as
idnlarx property name and value pairs.

1-605

nlarx

Input
Arguments

data

Time-domain iddata object.

na nb nk

Positive integers that specify the model orders and delays.

For ny output channels and nu input channels, na is an ny-by-ny matrix
whose i-jth entry gives the number of delayed jth outputs used to
compute the ith output. nb and nk are ny-by-nu matrices, where each
row defines the orders for the corresponding output.

Nonlinearity

Nonlinearity estimator, specified as a nonlinearity estimator object or
string representing the nonlinearity estimator type.

'wavenet' or wavenet object
(default)

Wavelet network

'sigmoidnet' or sigmoidnet object Sigmoid network

'treepartition' or treepartition object Binary-tree

'linear' or [] or linear object Linear function

neuralnet object Neural network

customnet object Custom network

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting Nonlinearity to an
ny-by-1 cell array or object array of nonlinearity estimators. To specify
the same nonlinearity for all outputs, specify Nonlinearity as a single
nonlinearity estimator.

LinModel

1-606

nlarx

Discrete time input-output polynomial model of ARX structure (idpoly),
typically estimated using the arx command.

Examples Estimate nonlinear ARX model with default settings:

load twotankdata
Ts = 0.2; % Sampling interval is 0.2 min
z = iddata(y,u,Ts); % constructs iddata object
m = nlarx(z,[4 4 1]) % na=nb=4 and nk=1

Estimate nonlinear ARX model with a specific nonlinearity:

NL = wavenet('NumberOfUnits',5);
% Wavelet network has 5 units

m = nlarx(z,[4 4 1],NL)

Estimate nonlinear ARX model with a custom network nonlinearity:

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1

g = - 2*x.*f;
a = 0.2;

end

% Estimate nonlinear ARX model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = customnet(H);
m = nlarx(data,[na nb nk],CNetw)

1-607

nlarx

Estimate nonlinear ARX model with specific algorithm settings:

m = nlarx(z,[4 4 1],'sigmoidnet','MaxIter',50,...
'Focus','Simulation')

% Maximum number of estimation iterations is 50.
% Estimation focus 'simulation' optimizes model for
% simulation applications.

Estimate nonlinear ARX model from time series data:

t = 0:0.01:10;
y = 10*sin(2*pi*10*t)+rand(size(t));
z = iddata(y',[],0.01);
m = nlarx(z,2,'sigmoid')
compare(z,m,1) % compare 1-step-ahead

% prediction pf response

Estimate nonlinear ARX model and avoid local minima:

% Estimate initial model.
load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])

% Perturb parameters slightly to avoid local minima:
m2=init(m1)

% Estimate model with perturbed initial parameter values:
m2=nlarx(z1,m2)

Estimate nonlinear ARX model with custom regressors:

% Load sample data z1 (iddata object).
load iddata1

% Estimate the model parameters:
m = nlarx(z1,[0 0 0],'linear','CustomReg',...

1-608

nlarx

{'y1(t-1)^2',...
'y1(t-2)*u1(t-3)'})

% na=nb=nk=0 means there are no standard regressors.
% 'linear' means that the nonlinear estimator has only
% the linear function.

Estimate nonlinear ARX model with custom regressor object:

% Load sample data z1 (iddata object):
load iddata1

% Define custom regressors as customreg objects:
C1 = customreg(@(x)x^2,{`y1'}, [1]); % y1(t-1)^2
C2 = customreg(@(x,y)x*y,{`y1', `u1'},...

[2 3]); % y1(t-2)*u1(t-3)
C = [C1, C2]; % object array of custom regressors

% Estimate model with custom regressors:
m = nlarx(z1,[0 0 0],`linear',`CustomReg',C);

% List all model regressors:
getreg(m)

Estimate nonlinear ARX model and search for optimum regressors for
input to the nonlinear function:

load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...

'NonlinearRegressors','search');
m.NonlinearRegressors
% regressors indices in nonlinear function

Estimate nonlinear ARX model with selected regressors as inputs to the
nonlinear function:

load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...

1-609

nlarx

'NonlinearReg','input');
% Only input regressors enter the nonlinear function.
% m is linear in past outputs.

Estimate nonlinear ARX model with no linear term in the nonlinearity
estimator:

load iddata1
SNL = sigmoidnet('LinearTerm','off')
m = nlarx(z1,[2 2 1],SNL);

Estimate MIMO nonlinear ARX model that has the same nonlinearity
estimator for all output channels:

m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
sigmoidnet('num',7))

% m uses a sigmoid network with 7 units
% for all output channels.

Estimate MIMO nonlinear ARX model with different nonlinearity
estimator for each output channel:

m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
['wavenet'; sigmoidnet('num',7)])

% first output channel uses a wavelet network
% second output channel uses a sigmoid network with 7 units

Estimate a nonlinear ARX model using an ARX model:

% Estimate linear ARX model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;

1-610

nlarx

DetrendedData = detrend(ThrottleData, Tr);
LinearModel = arx(DetrendedData, [2 1 1], 'Focus', 'Simulation');

% Estimate nonlinear ARX model using linear model to model
% output saturation in data.
NonlinearModel = nlarx(ThrottleData, LinearModel, 'sigmoidnet',...
'Focus', 'Simulation')

See Also addreg | customreg | getreg | idnlarx | init | polyreg

Tutorials • “Example – Using nlarx to Estimate Nonlinear ARX Models”

• “Estimate Nonlinear ARX Models Using Linear ARX Models”

How To • “Identifying Nonlinear ARX Models”

• “Using Linear Model for Nonlinear ARX Estimation”

1-611

nlhw

Purpose Estimate Hammerstein-Wiener model

Syntax m = nlhw(data,[nb nf nk])
m = nlhw(data,[nb nf nk],InputNL,OutputNL)
m = nlhw(data,[nb nf nk],InputNL,OutputNL,'Name',Value)
m = nlhw(data,LinModel)
m = nlhw(data,LinModel,InputNL,OutputNL)
m = nlhw(data,LinModel,InputNL,OutputNL,'PropertyName',

PropertyValue)

Description m = nlhw(data,[nb nf nk]) creates and estimates a
Hammerstein-Wiener model using piecewise linear functions as its
input and output nonlinearity estimators. data is a time-domain
iddata object. nb, nf, and nk are positive integers that specify the
model orders and delay. nb is the number of zeros plus 1, nf is the
number of poles, and nk is the input delay.

m = nlhw(data,[nb nf nk],InputNL,OutputNL) specifies input
nonlinearity InputNL and output nonlinearity OutputNL, as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

m = nlhw(data,[nb nf nk],InputNL,OutputNL,'Name',Value)
creates and estimates the model using options specified as idnlhw
model property or idnlhw algorithm property name and value pairs.
Specify Name inside single quotes.

m = nlhw(data,LinModel) creates and estimates a
Hammerstein-Wiener model using a linear model (in place of
[nb nf nk]), and default piecewise linear functions for the input
and output nonlinearity estimators. LinModel is a discrete-time
input-output polynomial model of Output-Error (OE) structure
(idpoly), or state-space model with no disturbance component (idss
with K = 0), or transfer function model (idtf). LinModel sets the model
orders, input delay, B and F polynomial values, input-output names
and units, sampling time and time units of m.

m = nlhw(data,LinModel,InputNL,OutputNL) specifies input
nonlinearity InputNL and output nonlinearity OutputNL.

1-612

nlhw

m =
nlhw(data,LinModel,InputNL,OutputNL,'PropertyName',PropertyValue)
creates and estimates the model using options specified as
idnlhw property name and value pairs.

Input
Arguments

data

Time-domain iddata object.

nb, nf, nk

Order of the linear transfer function, where nb is the number of zeros
plus 1, nf is the number of poles, and nk is the input delay.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices
whose i-jth entry specifies the orders and delay of the transfer function
from the jth input to the ith output.

InputNL, OutputNL

Input and output nonlinearity estimators, respectively, specified as a
nonlinearity estimator object or string representing the nonlinearity
estimator type.

'pwlinear' or pwlinear object
(default)

Piecewise linear function

'sigmoidnet' or sigmoidnet object Sigmoid network

'wavenet' or wavenet object Wavelet network

'saturation' or saturation object Saturation

'deadzone' or deadzone object Dead zone

'poly1d' or poly1d object One-
dimensional polynomial

'unitgain' or unitgain object Unit gain

customnet object Custom network

1-613

nlhw

Specifying a string creates a nonlinearity estimator object with default
settings. Use object representation to configure the properties of a
nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators
individually for each output channel by setting InputNL or OutputNL
to an ny-by-1 cell array or object array of nonlinearity estimators. To
specify the same nonlinearity for all outputs, specify a single input
and output nonlinearity estimator.

LinModel

Discrete time linear model, specified as one of the following:

• Input-output polynomial model of Output-Error (OE) structure
(idpoly)

• State-space model with no disturbance component (idss with K = 0)

• Transfer function model (idtf)

Typically, you estimate the model using oe, n4sid or tfest.

Examples Estimate a Hammerstein-Wiener model:

load iddata3
m1=nlhw(z3,[4 2 1],'sigmoidnet','deadzone')

Estimate a Hammerstein model with saturation:

load iddata1
% Create a saturation object with lower limit of 0
% and upper limit of 5
InputNL = saturation('LinearInterval', [0 5]);
% Estimate model with no output nonlinearity
m = nlhw(z1,[2 3 0],InputNL,[]);

1-614

nlhw

Estimate a Wiener model with a nonlinearity containing 5 sigmoid
units:

load iddata1
m2 = nlhw(z1,[2 3 0],[],sigmoidnet('num', 5))

Estimate a Hammerstein-Wiener model with a custom network
nonlinearity:

% Load data
load twotankdata;
z = iddata(y, u, 0.2, 'Name', 'Two tank system');
z1 = z(1:1000);

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1

g = - 2*x.*f;
a = 0.2;

end

% Estimate Hammerstein-Wiener model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = customnet(H);
m = nlhw(z1,[5 1 3],CNetw,[])

Estimate a MISO Hammerstein model with a different nonlinearity
for each input:

m = nlhw(data,[nb,nf,nk],...
[sigmoidnet;pwlinear],...
[])

1-615

nlhw

Refine a Hammerstein-Wiener model using successive calls of nlhw:

load iddata3
m3 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
m3 = nlhw(z3,m3)
% Retrieves the linear block
LinearBlock = m3.LinearModel

Estimate a Hammerstein-Wiener model and avoid local minima:

load iddata3
% Original model
M1 = nlhw(z3, [2 2 1], 'sigm','wave');
% Randomly perturbs parameters about nominal values
M1p = init(M1);
% Estimates parameters of perturbed model
M2 = pem(z3, M1p);

Estimate default Hammerstein-Wiener model using an input-output
polynomial model of Output-Error (OE) structure:

% Estimate linear OE model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[1 2 1],opt);

% Estimate Hammerstein-Wiener model using OE model as
% its linear component and saturation as its output nonlinearity.
NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation')

1-616

nlhw

See Also customnet | deadzone | findop(idnlhw) | linapp |
linearize(idnlhw) | idnlhw | pem | poly1d | pwlinear | saturation
| sigmoidnet | unitgain | wavenet

Tutorials • “Example – Using nlhw to Estimate Hammerstein-Wiener Models”

• “Estimate Hammerstein-Wiener Models Using Linear OE Models”

How To • “Identifying Hammerstein-Wiener Models”

• “Using Linear Model for Hammerstein-Wiener Estimation”

1-617

noise2meas

Purpose Noise component of model

Syntax noise_model = noise2meas(sys)
noise_model = noise2meas(sys,noise)

Description noise_model = noise2meas(sys) returns the noise component,
noise_model, of a linear identified model, sys. Use noise2meas to
convert a time-series model (no inputs) to an input/output model. The
converted model can be used for linear analysis, including viewing
pole/zero maps, and plotting the step response.

noise_model = noise2meas(sys,noise) specifies the noise variance
normalization method.

Input
Arguments

sys

Identified linear model.

noise

Noise variance normalization method.

noise is a string that takes one of the following values:

• 'innovations'— Noise sources are not normalized and remain as
the innovations process.

• 'normalize'— Noise sources are normalized to be independent and
of unit variance.

Default: 'innovations'

Output
Arguments

noise_model

Noise component of sys.

sys represents the system

y t Gu t He t() () ()

1-618

noise2meas

G is the transfer function between the measured input, u(t), and
the output, y(t). H is the noise model and describes the effect of the
disturbance, e(t), on the model’s response.

An equivalent state-space representation of sys is

x t Ax t Bu t Ke t
y t Cx t Du t e t
e t Lv t

() () () ()
() () () ()
() ()

v(t) is white noise with independent channels and unit variances.
The white-noise signal e(t) represents the model’s innovations
and has variance LLT. The noise-variance data is stored using the
NoiseVariance property of sys.

• If noise is 'innovations', then noise2meas returns H and
noise_model represents the system

y t He t() ()

An equivalent state-space representation of noise_model is

x t Ax t Ke t
y t Cx t e t
() () ()
() () ()

noise2meas returns the noise channels of sys as the input channels
of noise_model. The input channels are named using the format
'e@yk', where yk corresponds to the OutputName property of an
output. The measured input channels of sys are discarded and the
noise variance is set to zero.

• If noise is 'normalize', then noise2meas first normalizes

e t Lv t() ()

noise_model represents the system

y t HLv t() ()

1-619

noise2meas

or, equivalently, in state-space representation

x t Ax t KLv t
y t Cx t Lv t
() () ()
() () ()

The input channels are named using the format 'v@yk', where yk
corresponds to the OutputName property of an output.

The model type of noise_model depends on the model type of sys.

• noise_model is an idtf model if sys is an idproc model.

• noise_model is an idss model if sys is an idgrey model.

• noise_model is the same type of model as sys for all other model
types.

To obtain the model coefficients of noise_model in state-space
form, use ssdata. Similarly, to obtain the model coefficients in
transfer-function form, use tfdata.

Examples Convert Noise Component of Linear Identified Model into
Input/Output Model

Convert a time-series model to an input/output model that may be used
by linear analysis tools.

Identify a time-series model.

load iddata9 z9;
sys = ar(z9,4,'ls');

sys is an idpoly model with no inputs.

Convert sys to a measured model.

noise_model = noise2meas(sys);

noise_model is an idpoly model with one input.

1-620

noise2meas

You can use noise_model for linear analysis functions such as step,
iopzmap, etc.

Normalizing Noise Variance

Convert an identified linear model to an input/output model, and
normalize its noise variance.

Identify a linear model using data.

load twotankdata;
data = iddata(y,u,0.2);
sys = ssest(z,4);

sys is an idss model, with a noise variance of 6.6211e-06. The value
of L is sqrt(sys.NoiseVariance), which is 0.0026. The disturbance
matrix is

sys.K

0.2719
1.6570

-0.6318
-0.2877

Obtain a model that absorbs the noise variance of sys.

noise_model_normalize = noise2meas(sys,'normalize');

noise_model_normalize is an idpoly model. The B matrix for
noise_model_normalize is

noise_model_normalize.B

0.0007
0.0043

-0.0016
-0.0007

As expected, noise_model_normalize.B is equal to L*sys.K.

1-621

noise2meas

Compare the Bode response with a model that ignores the noise
variance of sys.

noise_model_innovation = noise2meas(sys,'innovations');
bodemag(noise_model_normalize,noise_model_innovation);
legend('Normalized noise variance','Ignored noise variance');

The difference between the bode magnitudes of the
noise_model_innovation and noise_model_normalized is
approximately 51 dB. As expected, the magnitude difference is
approximately equal to 20*log10(L).

See Also noisecnv | tfdata | zpkdata | idssdata | spectrum

1-622

noisecnv

Purpose Transform identified linear model with noise channels to model with
measured channels only

Syntax mod1 = noisecnv(mod)
mod2 = noisecnv(mod,'normalize')

Description mod is any linear identified model, idproc, idtf, idgrey, idpoly, or
idss.

The noise input channels in mod are converted as follows: Consider a
model with both measured input channels u (nu channels) and noise
channels e (ny channels) with covariance matrix Λ:

y Gu He
e LL

= +
= =cov() ’Λ

where L is a lower triangular matrix. Note that mod.NoiseVariance
= Λ. The model can also be described with unit variance, using a
normalized noise source v:

y Gu HLv
v I

= +
=cov()

• mod1 = noisecnv(mod) converts the model to a representation of
the system [G H] with nu+ny inputs and ny outputs. All inputs are
treated as measured, and mod1 does not have any noise model. The
former noise input channels have names e@yname, where yname is the
name of the corresponding output.

• mod2 = noisecnv(mod,'norm') converts the model to a
representation of the system [G HL] with nu+ny inputs and ny
outputs. All inputs are treated as measured, and mod2 does not
have any noise model. The former noise input channels have names
v@yname, where yname is the name of the corresponding output. Note
that the noise variance matrix factor L typically is uncertain (has a
nonzero covariance). This is taken into account in the uncertainty
description of mod2.

1-623

noisecnv

• If mod is a time series, that is, nu = 0, mod1 is a model that describes
the transfer function H with measured input channels. Analogously,
mod2 describes the transfer function HL.

Note the difference with subreferencing:

• mod('m') gives a description of G only.

• mod(:,[]) gives a description of the noise model characteristics as a
time-series model, that is, it describes H and also the covariance of
e. In contrast, noisecnv(m(:,[])) or noise2meas(m) describe just
the transfer function H. To obtain a description of the normalized
transfer function HL, use noisecnv(m(:,[]),'normalize') or
noise2meas('normalize').

Converting the noise channels to measured inputs is useful to study the
properties of the individual transfer functions from noise to output. It is
also useful for transforming identified linear models to representations
that do not handle disturbance descriptions explicitly.

Examples Identify a model with a measured component (G) and a non-trivial noise
component (H). Compare the amplitude of the measured component’s
frequency response to the noise component’s spectrum amplitude.
You must convert the noise component into a measured one by using
noisecnv if you want to compare its behavior against a truly measured
component.

load iddata2 z2
sys1 = armax(z2,[2 2 2 1]); % model with noise component
sys2 = tfest(z2,3); % model with a trivial noise component

sys1 = noisecnv(sys1);
sys2 = noisecnv(sys2);
bodemag(sys1,sys2)

See Also noise2meas | tfdata | zpkdata | idssdata

1-624

norm

Purpose Norm of linear model

Syntax n = norm(sys)
n = norm(sys,2)
n = norm(sys,inf)
[n,fpeak] = norm(sys,inf)
[...] = norm(sys,inf,tol)

Description n = norm(sys) or n = norm(sys,2) return the H2 norm of the linear
dynamic system model sys.

n = norm(sys,inf) returns the H∞ norm of sys.

[n,fpeak] = norm(sys,inf) also returns the frequency fpeak at
which the gain reaches its peak value.

[...] = norm(sys,inf,tol) sets the relative accuracy of the H∞
norm to tol.

Input
Arguments

sys

Continuous- or discrete-time linear dynamic system model. sys can
also be an array of linear models.

tol

Positive real value setting the relative accuracy of the H∞ norm.

Default: 0.01

Output
Arguments

n

H2 norm or H∞ norm of the linear model sys.

If sys is an array of linear models, n is an array of the same size as sys.
In that case each entry of n is the norm of each entry of sys.

fpeak

Frequency at which the peak gain of sys occurs.

1-625

norm

Definitions H2 norm

The H2 norm of a stable continuous-time system with transfer function
H(s), is given by:

H H j H j dH
2

1
2

= ⎡
⎣

⎤
⎦−∞

∞
∫

 Trace () () .

For a discrete-time system with transfer function H(z), the H2 norm
is given by:

H H e H e dj H j
2

1
2

= ⎡
⎣

⎤
⎦−∫

Trace () () .

The H2 norm is equal to the root-mean-square of the impulse response
of the system. The H2 norm measures the steady-state covariance (or
power) of the output response y = Hw to unit white noise inputs w:

H E y t y t E w t w t I
t

T T
2
2 = { } () = −()

→∞
lim () () , () () .

The H2 norm is infinite in the following cases:

• sys is unstable.

• sys is continuous and has a nonzero feedthrough (that is, nonzero
gain at the frequency ω = ∞).

norm(sys) produces the same result as

sqrt(trace(covar(sys,1)))

H-infinity norm

The H∞ norm (also called the L∞ norm) of a SISO linear system is the
peak gain of the frequency response. For a MIMO system, the H∞
norm is the peak gain across all input/output channels. Thus, for a
continuous-time system H(s), the H∞ norm is given by:

1-626

norm

H s H j

H s H j

() = ()

() = (

∞

∞

max)

max max

 (SISO

))() (MIMO)

where σmax(·) denotes the largest singular value of a matrix.

For a discrete-time system H(z):

H z H e

H z

j() = ()
() =

∞ ∈[]

∞ ∈

max)

max

,

0
 (SISO

00,
max)

[] ()()H e j (MIMO

The H∞ norm is infinite if sys has poles on the imaginary axis (in
continuous time), or on the unit circle (in discrete time).

Examples This example uses norm to compute the H2 and H∞ norms of a
discrete-time linear system.

Consider the discrete-time transfer function

H z
z z z

z z z
()

. . .

. . .
= − + −

− + −

3 2

3 2
2 841 2 875 1 004

2 417 2 003 0 5488

with sample time 0.1 second.

To compute the H2 norm of this transfer function, enter:

H = tf([1 -2.841 2.875 -1.004],[1 -2.417 2.003 -0.5488],0.1)
norm(H)

These commands return the result:

ans =
1.2438

To compute the H∞ infinity norm, enter:

1-627

norm

[ninf,fpeak] = norm(H,inf)

This command returns the result:

ninf =
2.5488

fpeak =
3.0844

You can use a Bode plot of H(z) to confirm these values.

bode(H)
grid on;

1-628

norm

The gain indeed peaks at approximately 3 rad/sec. To find the peak
gain in dB, enter:

20*log10(ninf)

This command produces the following result:

ans =
8.1268

1-629

norm

Algorithms norm first converts sys to a state space model.

norm uses the same algorithm as covar for the H2 norm. For the H∞
norm, norm uses the algorithm of [1]. norm computes the H∞ norm
(peak gain) using the SLICOT library. For more information about the
SLICOT library, see http://slicot.org.

References [1] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the
H∞-Norm of a Transfer Function Matrix," System Control Letters, 14
(1990), pp. 287-293.

See Also freqresp | sigma

1-630

http://slicot.org

nparams

Purpose Number of model parameters

Syntax np = nparams(sys)
np = nparams(sys,'free')

Description np = nparams(sys) returns the number of parameters in the identified
model sys.

np = nparams(sys,'free') returns the number free estimation
parameters in the identified model sys.

Note Not all model coefficients are parameters, such as the leading
entry of the denominator polynomials in idpoly and idtf models.

Input
Arguments

sys

Identified linear model.

Output
Arguments

np

Number of parameters of sys.

For the syntax np = nparams(sys,'free'), np is the number of free
estimation parameters of sys.

idgrey models can contain non-scalar parameters. nparams accounts
for each individual entry of the non-scalar parameters in the total
parameter count.

Examples Obtain the number of parameters of a transfer function model.

sys = idtf(1,[1 2]);
np = nparams(sys);

1-631

nparams

Obtain the number of free estimation parameters of a transfer function
model.

sys0 = idtf([1 0],[1 2 0]);
sys0.Structure.den.Free(3) = false;
np = nparams(sys,'free');

See Also size | idpoly | idss | idtf | idproc | idgrey | idfrd

1-632

nuderst

Purpose Set step size for numerical differentiation

Syntax nds = nuderst(pars)

Description Many estimation functions use numerical differentiation with respect to
the model parameters to compute their values.

The step size used in these numerical derivatives is determined by the
nuderst command. The output argument nds is a row vector whose kth
entry gives the increment to be used when differentiating with respect
to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step
size is the maximum of 10-4 times the absolute value of the current
parameter and 10-7. You can adjust this to the actual value of the
corresponding parameter by editing nuderst. Note that the nominal
value, for example 0, of a parameter might not reflect its normal size.

1-633

nyquist

Purpose Nyquist plot of frequency response

Syntax nyquist(sys)
nyquist(sys,w)
nyquist(sys1,sys2,...,sysN)
nyquist(sys1,sys2,...,sysN,w)
nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')
[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)
[re,im,w,sdre,sdim] = nyquist(sys)

Description nyquist creates a Nyquist plot of the frequency response of a dynamic
system model. When invoked without left-hand arguments, nyquist
produces a Nyquist plot on the screen. Nyquist plots are used to analyze
system properties including gain margin, phase margin, and stability.

nyquist(sys) creates a Nyquist plot of a dynamic system sys. This
model can be continuous or discrete, and SISO or MIMO. In the MIMO
case, nyquist produces an array of Nyquist plots, each plot showing the
response of one particular I/O channel. The frequency points are chosen
automatically based on the system poles and zeros.

nyquist(sys,w) explicitly specifies the frequency range or frequency
points to be used for the plot. To focus on a particular frequency
interval, set w = {wmin,wmax}. To use particular frequency points,
set w to the vector of desired frequencies. Use logspace to generate
logarithmically spaced frequency vectors. Frequencies must be in
rad/TimeUnit, where TimeUnit is the time units of the input dynamic
system, specified in the TimeUnit property of sys.

nyquist(sys1,sys2,...,sysN) or nyquist(sys1,sys2,...,sysN,w)
superimposes the Nyquist plots of several LTI models on a single figure.
All systems must have the same number of inputs and outputs, but may
otherwise be a mix of continuous- and discrete-time systems. You can
also specify a distinctive color, linestyle, and/or marker for each system
plot with the syntax

1-634

nyquist

nyquist(sys1,'PlotStyle1',...,sysN,'PlotStyleN')

See bode for an example.

When invoked with left-hand arguments

[re,im,w] = nyquist(sys)
[re,im] = nyquist(sys,w)

return the real and imaginary parts of the frequency response at
the frequencies w (in rad/TimeUnit). re and im are 3-D arrays (see
"Arguments" below for details).

[re,im,w,sdre,sdim] = nyquist(sys) also returns the standard
deviations of re and im for the identified system sys.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Arguments The output arguments re and im are 3-D arrays with dimensions

(number of outputs) (number of inputs) (length of w)× ×

For SISO systems, the scalars re(1,1,k) and im(1,1,k) are the real
and imaginary parts of the response at the frequency ωk = w(k).

re

im

(, ,) Re ()

(, ,) Im ()

1 1

1 1

k h j

k h jw
k

k

= ()
= ()

ω

For MIMO systems with transfer function H(s), re(:,:,k) and
im(:,:,k) give the real and imaginary parts of H(jωk) (both arrays with
as many rows as outputs and as many columns as inputs). Thus,

1-635

nyquist

re(i, j,k)

im(i, j,k)

= ()
= ()
Re ()

Im ()

h j

h j

ij k

ij k

ω

ω

where hij is the transfer function from input j to output i.

Examples Example 1

Nyquist Plot of Dynamic System

Plot the Nyquist response of the system

H s
s s

s s
() = + +

+ +
2 5 1

2 3

2

2

H = tf([2 5 1],[1 2 3])
nyquist(H)

1-636

nyquist

The nyquist function has support for M-circles, which are the contours
of the constant closed-loop magnitude. M-circles are defined as the
locus of complex numbers where

T j
G j

G j
()

()
()

ω ω
ω

=
+1

is a constant value. In this equation, ω is the frequency in
radians/TimeUnit, where TimeUnit is the system time units, and G is
the collection of complex numbers that satisfy the constant magnitude
requirement.

To activate the grid, select Grid from the right-click menu or type

grid

1-637

nyquist

at the MATLAB prompt. This figure shows the M circles for transfer
function H.

You have two zoom options available from the right-click menu that
apply specifically to Nyquist plots:

• Tight —Clips unbounded branches of the Nyquist plot, but still
includes the critical point (-1, 0)

• On (-1,0) — Zooms around the critical point (-1,0)

Also, click anywhere on the curve to activate data markers that display
the real and imaginary values at a given frequency. This figure shows
the nyquist plot with a data marker.

1-638

nyquist

Example 2

Compute the standard deviation of the real and imaginary parts of
frequency response of an identified model. Use this data to create a 3σ
plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard
deviation data for the real and imaginary parts of the frequency
response.

load iddata2 z2;
sys_p = tfest(z2,2);
w = linspace(-10*pi,10*pi,512);
[re, im, ~, sdre, sdim] = nyquist(sys_p,w);

sys_p is an identified transfer function model. sdre and sdim contain
1-std standard deviation uncertainty values in re and im respectively.

1-639

nyquist

Create a Nyquist plot showing the response and its 3σ uncertainty:

re = squeeze(re);

im = squeeze(im);

sdre = squeeze(sdre);

sdim = squeeze(sdim);

plot(re,im,'b', re+3*sdre, im+3*sdim, 'k:', re-3*sdre, im-3*sdim, 'k:')

Algorithms See bode.

See Also bode | evalfr | freqresp | ltiview | nichols | sigma

1-640

nyquistoptions

Purpose List of Nyquist plot options

Syntax P = nyquistoptions
P = nyquistoptions('cstprefs')

Description P = nyquistoptions returns the default options for Nyquist plots. You
can use these options to customize the Nyquist plot appearance using
the command line.

P = nyquistoptions('cstprefs') initializes the plot options with the
options you selected in the Control System Toolbox Preferences Editor.
For more information about the editor, see “Toolbox Preferences Editor”
in the User’s Guide documentation.

The following table summarizes the Nyquist plot options.

Option Description

Title, XLabel, YLabel Label text and style

TickLabel Tick label style

Grid Show or hide the grid
Specified as one of the following strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes

Xlim, Ylim Axes limits

IOGrouping Grouping of input-output pairs
Specified as one of the following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels,
OutputLabels

Input and output label styles

InputVisible,
OutputVisible

Visibility of input and output channels

1-641

nyquistoptions

Option Description

FreqUnits Frequency units, specified as one of the following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

• 'cycles/week'

• 'cycles/month'

1-642

nyquistoptions

Option Description

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto' which uses frequency units
rad/TimeUnit relative to system time units specified in the
TimeUnit property. For multiple systems with different time
units, the units of the first system are used.

MagUnits Magnitude units
Specified as one of the following strings: 'dB' | 'abs'
Default: 'dB'

PhaseUnits Phase units
Specified as one of the following strings: 'deg' | 'rad'
Default: 'deg'

ShowFullContour Show response for negative frequencies
Specified as one of the following strings: 'on' | 'off'
Default: 'on'

ConfidenceRegionNumberSDNumber of standard deviations to use to plotting the response
confidence region (identified models only).
Default: 1.

ConfidenceRegionDisplaySpacingThe frequency spacing of confidence ellipses. For identified models
only.
Default: 5, which means the confidence ellipses are shown at
every 5th frequency sample.

Examples This example shows how to create a Nyquist plot displaying the full
contour (the response for both positive and negative frequencies).

P = nyquistoptions;
P.ShowFullContour = 'on';
h = nyquistplot(tf(1,[1,.2,1]),P);

1-643

nyquistoptions

See Also nyquist | nyquistplot | getoptions | setoptions | setoptions
| showConfidence

1-644

nyquistplot

Purpose Nyquist plot with additional plot customization options

Syntax h = nyquistplot(sys)
nyquistplot(sys,{wmin,wmax})
nyquistplot(sys,w)
nyquistplot(sys1,sys2,...,w)
nyquistplot(AX,...)
nyquistplot(..., plotoptions)

Description h = nyquistplot(sys) draws the Nyquist plot of the dynamic system
model sys. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands.
Type

help nyquistoptions

for a list of available plot options.

The frequency range and number of points are chosen automatically.
See bode for details on the notion of frequency in discrete time.

nyquistplot(sys,{wmin,wmax}) draws the Nyquist plot for frequencies
between wmin and wmax (in rad/TimeUnit, where TimeUnit is the time
units of the input dynamic system, specified in the TimeUnit property
of sys).

nyquistplot(sys,w) uses the user-supplied vector w of frequencies
(in rad/TimeUnit, where TimeUnit is the time units of the input
dynamic system, specified in the TimeUnit property of sys) at which
the Nyquist response is to be evaluated. See logspace to generate
logarithmically spaced frequency vectors.

nyquistplot(sys1,sys2,...,w) draws the Nyquist plots of multiple
models sys1,sys2,... on a single plot. The frequency vector w is optional.
You can also specify a color, line style, and marker for each system, as in

nyquistplot(sys1,'r',sys2,'y--',sys3,'gx')

nyquistplot(AX,...) plots into the axes with handle AX.

1-645

nyquistplot

nyquistplot(..., plotoptions) plots the Nyquist response with the
options specified in plotoptions. Type

help nyquistoptions

for more details.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Customize Nyquist Plot Frequency Units

Plot the Nyquist frequency response and change the units to rad/s.

sys = rss(5);
h = nyquistplot(sys);
% Change units to radians per second.
setoptions(h,'FreqUnits','rad/s');

Example 2

Compare the frequency responses of identified state-space models of
order 2 and 6 along with their 1-std confidence regions rendered at
every 50th frequency sample.

load iddata1
sys1 = n4sid(z1, 2) % discrete-time IDSS model of order 2
sys2 = n4sid(z1, 6) % discrete-time IDSS model of order 6

Both models produce about 76% fit to data. However, sys2 shows
higher uncertainty in its frequency response, especially close to Nyquist
frequency as shown by the plot:

w = linspace(10,10*pi,256);

h = nyquistplot(sys1,sys2,w);

setoptions(h,'ConfidenceRegionDisplaySpacing',50,'ShowFullContour','off');

1-646

nyquistplot

Right-click to turn on the confidence region characteristic by using the
Characteristics-> Confidence Region.

See Also getoptions | nyquist | setoptions | showConfidence

1-647

oe

Purpose Estimate Output-Error polynomial model using time or frequency
domain data

Syntax sys = oe(data,[nb nf nk])
sys = oe(data,[nb nf nk],Name,Value)
sys = oe(data,init_sys)
sys = oe(data, ___ ,opt)

Description sys = oe(data,[nb nf nk]) estimates an Output-Error model, sys,
represented by:

y t u t nk e t
B q
F q

() () ()
()
()

y(t) is the output, u(t) is the input, and e(t) is the error.

sys is estimated for the time- or frequency-domain, measured
input-output data, data. The orders, [nb nf nk], parameterize the
estimated polynomial.

sys = oe(data,[nb nf nk],Name,Value) specifies model structure
attributes using additional options specified by one or more
Name,Value pair arguments.

sys = oe(data,init_sys) uses the Output-Error structure polynomial
model (idpoly) init_sys to configure the initial parameterization
of sys.

sys = oe(data, ___ ,opt) estimates a polynomial model using the
option set, opt, to specify estimation behavior.

Tips • To estimate a continuous-time model when data represents
continuous-time frequency response data, omit nk.

For example, use sys = oe(data,[nb nf]).

Input
Arguments

data

Estimation data.

1-648

oe

For time domain estimation, data is an iddata object containing the
input and output signal values.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — 'Frequency'

For multi-experiment data, the sample times and inter-sample behavior
of all the experiments must match.

[nb nf nk]

Output error model orders.

For a system represented by:

y t u t nk e t
B q
F q

() () ()
()
()

where y(t) is the output, u(t) is the input and e(t) is the error.

• nb— Order of the B polynomial + 1. nb is an Ny-by-Nu matrix. Ny is
the number of outputs and Nu is the number of inputs.

• nf— Order of the F polynomial. nf is an Ny-by-Nu matrix. Ny is the
number of outputs and Nu is the number of inputs.

• nk — Input delay, expressed as the number of samples. nk is an
Ny-by-Nu matrix. Ny is the number of outputs and Nu is the number
of inputs. The delay appears as leading zeros of the B polynomial.

For estimation using continuous-time data, only specify [nb nf] and
omit nk.

init_sys

1-649

oe

Polynomial model that configures the initial parameterization of sys.

Specify init_sys as an idpoly model having the Output-Error
structure.

Use the Structure property of init_sys to configure initial guesses
and constraints for B(q) and F(q).

To specify an initial guess for, say, the F(q) term of init_sys, set
init_sys.Structure.f.Value as the initial guess.

To specify constraints for, say, the B(q) term of init_sys:

• Set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values

• Set init_sys.Structure.b.Maximum to the maximum B(q)
coefficient values

• Set init_sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation

If opt is not specified, and init_sys was created by estimation, then
the estimation options from init_sys.Report.OptionsUsed are used.

opt

Estimation options.

opt is an options set, created using oeOptions, that specifies estimation
options including:

• Estimation objective

• Handling of initial conditions

• Numerical search method and the associated options

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can

1-650

oe

specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

’ioDelay’

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time
unit stored in the TimeUnit property. For discrete-time systems,
specify transport delays as integers denoting delay of a multiple of
the sampling period Ts. You can specify ioDelay as an alternative
to the nk value. Doing so simplifies the model structure by reducing
the number of leading zeros the B polynomial. In particular, you can
represent max(nk-1,0) leading zeros as input/output delays using
ioDelay instead.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to
a Ny-by-Nu array. Each entry of this array is a numerical value that
represents the transport delay for the corresponding input/output pair.
You can also set ioDelay to a scalar value to apply the same delay to all
input/output pairs.

1-651

oe

Default: 0 for all input/output pairs

Output
Arguments

sys

Identified Output-Error polynomial model.

sys is an idpoly model which encapsulates the identified Output Error
model and the associated parameter covariance data.

Definitions Output-Error (OE) Model

The general Output-Error model structure is:

y t
B q
F q

u t nk e t()
()
()

() ()= − +

The orders of the Output-Error model are:

nb B q b b q b q

nf F q f q f

nb
nb

n

:

:

() ...

() ...-

= + + +

= + + +

− − +
1 2

1 1

1
11 ff

nfq-

Continuous-Time, Output-Error Model

If data is continuous-time frequency-domain data, oe estimates a
continuous-time model with transfer function:

G s
B s
F s

b s b s b

s f s
nb

nb
nb

nb

nf
nf

nf
()

()
()

...() ()

()
= =

+ + +

+

−
−

−

−

1
1

2
1

1 ++ +... f1

The orders of the numerator and denominator are nb and nf, similar to
the discrete-time case. However, the delay nk has no meaning and you
should omit it when specifying model orders for estimation. Use model
= oe(data, [nb nf]). Use the ioDelay model property to specify any
input-output delays. For example, use model = oe(data, [nb nf],
'ioDelay', iod) instead.

1-652

oe

Examples Estimate Continuous-Time Model Using Frequency Response

Obtain the estimation data.

filename = fullfile(matlabroot,'help','toolbox',...
'ident','examples','oe_data1.mat');

load(filename);

data, an idfrd object, contains the continuous-time frequency response
for the following model:

G s
s

s s s
()

3

2 13 2

Estimate the model.

nb = 2;
nk = 3;
sys = oe(data,[nb nk]);

Evaluate the goodness of the fit.

compare(data,sys);

Estimate Model Using Band-Limited Discrete-Time
Frequency-Domain Data

Obtain the estimation data.

filename = fullfile(matlabroot,'help','toolbox',...
'ident','examples','oe_data2.mat');

load(filename,'data','Ts');

data, an iddata object, contains the discrete-time frequency response
for the following model:

G s
s

()

1000

500

1-653

oe

The sampling time for data, Ts, is 0.001 seconds.

Treat data as continuous-time data.

When you plot data, the input/output signals are band-limited, which
allows you to treat data as continuous-time data. You can now obtain
a continuous-time model.

data.Ts = 0;

Specify the estimation options.

opt = oeOptions('Focus',[0 0.5*pi/Ts]);

Limiting the 'Focus' option to the [0 0.5*pi/Ts] range directs the
software to ignore the response values for frequencies higher than
0.5*pi/Ts rad/s.

Estimate the model.

nb = 1;
nf = 3;

sys = oe(data,[nb nf],opt);

Algorithms The estimation algorithm minimizes prediction errors.

Alternatives Output-Error models are a special configuration of polynomial models,
having only two active polynomials - B and F. For such models, it may
be more convenient to use a transfer function (idtf) model and its
estimation command, tfest.

Also, tfest is the recommended command for estimating
continuous-time models.

See Also oeOptions | tfest | arx | armax | iv4 | n4sid | bj |
polyest | idpoly | iddata | idfrd | sim | compare

1-654

oeOptions

Purpose Option set for oe

Syntax opt = oeOptions
opt = oeOptions(Name,Value)

Description opt = oeOptions creates the default options set for oe.

opt = oeOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial conditions are set to zero.

• 'estimate' — The initial conditions are treated as independent
estimation parameters.

• 'backcast' — The initial conditions are estimated using the best
least squares fit.

• 'auto' — The software chooses the method to handle initial
conditions based on the estimation data.

Default: 'auto'

’Focus’

1-655

oeOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation' — Estimates a stable model using the frequency
weighting of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes the one-step-ahead prediction.
This approach typically favors fitting small time intervals (higher
frequency range). From a statistical-variance point of view, this
weighting function is optimal. However, this method neglects the
approximation aspects (bias) of the fit. This option does not enforce
model stability.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter

1-656

oeOptions

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. You receive an
estimation result that is the same as if you had first prefiltered
using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same length
as the frequency vector of the data set, Data.Frequency. Each input
and output response in the data is multiplied by the corresponding
weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

1-657

oeOptions

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is

1-658

oeOptions

no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [1]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular
values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). This value is increased by the
factor LMStep each time the search fails to find a lower value of
the criterion in less than 5 bisections. This value is decreased by
the factor 2*LMStep each time a search is successful without any
bisections.

• 'lm' — Uses the Levenberg-Marquardt method so that the next
parameter value is -pinv(H+d*I)*grad from the previous one. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a
number that is increased until a lower value of the criterion is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox software. You must have Optimization Toolbox installed
to use this option. This search method can handle only the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — The algorithm chooses one of the preceding options.
The descent direction is calculated using 'gn', 'gna', 'lm', and
'grad' successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-659

oeOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-660

oeOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-661

oeOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-662

oeOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [2].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial condition.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-663

oeOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
conditions.

- yp,e is the predicted output of a model estimated using estimated
initial conditions.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for oe.

Examples Create Default Options Set for Output-Error Estimation

opt = oeOptions;

Specify Options for Output-Error Estimation

Create an options set for oe using the 'backcast' algorithm to initialize
the condition and set the Display to 'on'.

opt = oeOptions('InitialState','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = oeOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

References [1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

1-664

oeOptions

See Also oe | idfilt

1-665

operspec(idnlarx)

Purpose Construct operating point specification object for idnlarx model

Syntax SPEC = operspec(NLSYS)

Description SPEC = operspec(NLSYS) creates an operating point specification
object for the idnlarx model NLSYS. The object encapsulates
constraints on input and output signal values. These specifications
are used to determine an operating point of the idnlarx model using
findop(idnlarx).

Input
Arguments

• NLSYS: idnlarx model.

Output
Arguments

• SPEC: Operating point specification object. SPEC contains the
following properties:

- Input: Structure with fields:

• Value: Initial guess for the values of the input signals. Specify
a vector of length equal to number of model inputs. Default
value: Vector of zeros.

• Min: Minimum value constraint on values of input signals for
the model. Default: -Inf for all channels.

• Max: Maximum value constraint on values of input signals for
the model. Default: Inf for all channels.

• Known: Specifies when Value is known (fixed) or is an initial
guess. Use a logical vector to denote which signals are known
(logical 1, or true) and which have to be estimated using findop
(logical 0, or false). Default value: true.

- Output: Structure with fields:

• Value: Initial guess for the values of the output signals. Default
value: Vector of zeros.

• Min: Minimum value constraint on values of output signals for
the model. Default value: -Inf.

1-666

operspec(idnlarx)

• Max: Maximum value constraint on values of output signals for
the model. Default value: -Inf.

See Also findop(idnlarx)

1-667

operspec(idnlhw)

Purpose Construct operating point specification object for idnlhw model

Syntax SPEC = operspec(NLSYS)

Description SPEC = operspec(NLSYS) creates an operating point specification
object for the idnlhw model NLSYS. The object encapsulates
constraints on input and output signal values. These specifications
are used to determine an operating point of the idnlhw model using
findop(idnlhw).

Input
Arguments

• NLSYS: idnlhw model.

Output
Arguments

• SPEC: Operating point specification object. SPEC contains the
following fields:

- Value: Initial guess for the values of the input signals. Specify a
vector of length equal to number of model inputs. Default value:
Vector of zeros.

- Min: Minimum value constraint on values of input signals for the
model. Default: -Inf for all channels.

- Max: Maximum value constraint on values of input signals for the
model. Default: Inf for all channels.

- Known: Specifies when Value is known (fixed) or is an initial guess.
Use a logical vector to denote which signals are known (logical 1,
or true) and which have to be estimated using findop (logical 0,
or false). Default value: true.

1-668

operspec(idnlhw)

Note

1 If the input is completely known ('Known' field is set to true for all
input channels), then the initial state values are determined using
input values only. In this case, findop(idnlhw) ignores the output
signal specifications.

2 If the input values are not completely known, findop(idnlhw) uses
the output signal specifications to achieve the following objectives:

• Match target values of known output signals (output channels
with Known = true).

• Keep the free output signals (output channels with Known = false)
within the specified min/max bounds.

See Also findop(idnlhw)

1-669

order

Purpose Query model order

Syntax NS = order(sys)

Description NS = order(sys) returns the model order NS. The order of a dynamic
system model is the number of poles (for proper transfer functions) or
the number of states (for state-space models). For improper transfer
functions, the order is defined as the minimum number of states
needed to build an equivalent state-space model (ignoring pole/zero
cancellations).

order(sys) is an overloaded method that accepts SS, TF, and ZPK
models. For LTI arrays, NS is an array of the same size listing the
orders of each model in sys.

Caveat order does not attempt to find minimal realizations of MIMO systems.
For example, consider this 2-by-2 MIMO system:

s=tf('s');
h = [1, 1/(s*(s+1)); 1/(s+2), 1/(s*(s+1)*(s+2))];
order(h)
ans =

6

Although h has a 3rd order realization, order returns 6. Use

order(ss(h,'min'))

to find the minimal realization order.

See Also pole | balred

1-670

pe

Purpose Prediction error for an identified model

Syntax err = pe(sys,data,K)
err = pe(sys,data,K, ___ ,opt)
[err,x0e,sys_pred] = pe(sys,data,K, ___ ,opt)
pe(sys,data,K, ___)

Description err = pe(sys,data,K) returns the K-step prediction error for the
output of the identified model, sys. The prediction error is determined
by subtracting the K-step ahead predicted response from the measured
output. The prediction error is calculated for the time span covered
by data. For more information of computation of predicted response,
see predict.

err = pe(sys,data,K, ___ ,opt) returns the prediction error using
the option set, opt, to specify prediction error calculation behavior.

[err,x0e,sys_pred] = pe(sys,data,K, ___ ,opt) also returns the
estimated initial state, x0e, and a predictor system, sys_pred.

pe(sys,data,K, ___) plots the prediction error.

Input
Arguments

sys

Identified model.

data

Measured input-output history.

If sys is a time-series model, which has no input signals, then specify
data as an iddata object with no inputs. In this case, you can also
specify data as a matrix of the past time-series values.

K

Prediction horizon.

Specify K as a positive integer that is a multiple of the data sample
time. Use K = Inf to compute the pure simulation error.

1-671

pe

Default: 1

opt

Prediction options.

opt is an option set, created using peOptions, that configures the
computation of the predicted response. Options that you can specify
include:

• Handling of initial conditions

• Data offsets

Output
Arguments

err

Prediction error.

err is an iddata object.

Outputs up to the time t-K and inputs up to the time instant t are used
to calculate the prediction error at the time instant t.

When K = Inf, the predicted output is a pure simulation of the system.

For multi-experiment data, err contains the prediction error data for
each experiment. The time span of the prediction error matches that of
the observed data.

x0e

Estimated initial states.

x0e is returned only for state-space systems.

sys_pred

Predictor system.

sys_pred is a dynamic system. When you simulate sys_pred, using
[data.OutputData data.InputData] as the input, the output, yp, is
such that err.OutputData = data.OutputData - yp. For state-space

1-672

pe

models, the software uses x0e as the initial condition when simulating
sys_pred.

For discrete-time data, sys_pred is always a discrete-time model.

For multi-experiment data, sys_pred is an array of models, with one
entry for each experiment.

Examples Compute Prediction Error for an ARIX Model

Compute the prediction error for an ARIX model.

Use the error data to compute the variance of the noise source e(t).

Obtain noisy data.

noise = [(1:150)';(151:-1:2)'];

load iddata1 z1;
z1.y = z1.y+noise;

noise is a triangular wave that is added to the output signal of z1, an
iddata object.

Estimate an ARIX model for the noisy data.

sys = arx(z1,[2 2 1],'IntegrateNoise',true);

Compute the prediction error of the estimated model.

K = 1;
err = pe(z1,sys,K);

pe computes the one-step prediction error for the output of the identified
model, sys.

Compute the variance of the noise source, e(t).

noise_var = err.y'*err.y/(299-nparams(sys)-order(sys));

Compare the computed value with model’s noise variance.

1-673

pe

sys.NoiseVariance

The output of sys.NoiseVariance matches the computed variance.

See Also peOptions | predict | resid | sim | lsim | compare | ar |
arx | n4sid | iddata | idpar

1-674

peOptions

Purpose Option set for pe

Syntax opt = peOptions
opt = peOptions(Name,Value)

Description opt = peOptions creates the default options set for pe.

opt = peOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify the handling of initial conditions.

InitialCondition takes one of the following:

• 'z' — Zero initial conditions.

• 'e'— Estimate initial conditions such that the prediction error for
observed output is minimized.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients.

• x0 — Numerical column vector denoting initial states. For
multi-experiment data, use a matrix with Ne columns, where Ne
is the number of experiments. Use this option for state-space and
nonlinear models only.

• io — Structure with the following fields:

- Input

- Output

1-675

peOptions

Use the Input and Output fields to specify the input/output history
for a time interval that starts before the start time of the data used
by pe. If the data used by pe is a time-series model, specify Input as
[]. Use a row vector to denote a constant signal value. The number
of columns in Input and Output must always equal the number of
input and output channels, respectively. For multi-experiment data,
specify io as a struct array of Ne elements, where Ne is the number
of experiments.

• x0obj — Specification object created using idpar. Use this object
for discrete-time state-space models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying
minimum/maximum bounds.

Default: [] (Initial conditions are determined based on how the
model was estimated.)

’InputOffset’

Removes offset from time domain input data during prediction-error
calculation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

For multi-experiment data, specify InputOffset as an Nu-by-Ne
matrix. Nu is the number of inputs, and Ne is the number of
experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Specify input offset for only time domain data.

Default: []

’OutputOffset’

Removes offset from time domain output data during prediction-error
calculation.

1-676

peOptions

Specify as a column vector of length Ny, where Ny is the number of
outputs.

In case of multi-experiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Specify output offset for only time domain data.

Default: []

’OutputWeight’

Weight of output for initial condition estimation.

OutputWeight takes one of the following:

• []— No weighting is used. This value is the same as using eye(Ny)
for the output weight, where Ny is the number of outputs.

• 'noise'— Inverse of the noise variance stored with the model.

• matrix — A positive, semidefinite matrix of dimension Ny-by-Ny,
where Ny is the number of outputs.

Default: []

Output
Arguments

opt

Option set containing the specified options for pe.

Examples Create Default Options Set for Prediction-Error Calculation

opt = peOptions;

Specify Options for Prediction-Error Calculation

Create an options set for pe using zero initial conditions, and set the
input offset to 5.

1-677

peOptions

opt = peOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = peOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also pe | idpar

1-678

pem

Purpose Prediction error estimate for linear or nonlinear model

Syntax sys = pem(data,init_sys)
sys = pem(data,init_sys,opt)

Description sys = pem(data,init_sys) updates the parameters of init_sys, a
linear or nonlinear model, to fit the given estimation data, data. The
prediction-error minimization algorithm is used to update the free
parameters of init_sys.

sys = pem(data,init_sys,opt) configures the estimation options
using the option set opt. This syntax is valid for linear models only.

Input
Arguments

data

Estimation data.

Specify data as an iddata or idfrd object containing the measured
input/output data.

The input-output dimensions of data and init_sys must match.

You can specify frequency-domain data only when init_sys is a linear
model.

init_sys

Linear or nonlinear identified model that configures the initial
parameterization of sys.

init_sys may be a linear or nonlinear model and must have finite
parameter values. You may obtain init_sys by performing an
estimation using measured data, or by direct construction. idnlarx and
idnlhw models can be obtained only by estimation.

You can configure initial guesses, specify minimum/maximum bounds,
and fix or free for estimation any parameter of init_sys.

• For linear models, use the Structure property. For more information,
see “Imposing Constraints on Model Parameter Values”.

1-679

pem

• For nonlinear models grey-box models, use the InitialStates and
Parameters properties. Parameter constraints cannot be specified
for nonlinear ARX and Hammerstein-Wiener models.

opt

Estimation options.

opt is an option set that specifies:

• Estimation algorithm settings

• Handling of the estimating focus

• Initial conditions

• Data offsets

You can specify an option set only when init_sys is a linear model.

You must create an option set using one of the following functions. The
function used to create the option set depends on the initial model type.

Model Type Option Set Function

idss ssestOptions

idtf tfestOptions

idproc procestOptions

idpoly polyestOptions

idgrey greyestOptions

Output
Arguments

sys

Identified model.

sys is obtained by estimating the free parameters of init_sys using
the prediction error minimization algorithm.

1-680

pem

Examples Refine Estimated State-Space Model

Estimate a discrete-time state-space model using the subspace method.
Then, refine it by minimizing the prediction error.

Estimate a discrete-time state-space model using n4sid, which applies
the subspace method.

load iddata7 z7;
z7a = z7(1:300);
opt = n4sidOptions('Focus','simulation');
init_sys = n4sid(z7a,4,opt);

init_sys, the estimated state-space model, provides a 73.85% fit to the
estimation data (see init_sys.Report.Fit.FitPercent). Use pem to
improve the closeness of the fit.

Obtain a refined estimated model by using pem.

sys = pem(z7a,init_sys);

Analyze the results.

compare(z7a,sys,init_sys);

sys refines the estimated model and provides a 74.54% fit to the
estimation data (see init_sys.Report.Fit.FitPercent).

1-681

pem

Configure Estimation Using Process Model

Create a process model structure and update its parameter values to
minimize prediction error.

Create a process model and initialize its coefficients.

init_sys = idproc('P2UDZ');
init_sys.Kp = 10;
init_sys.Tw = 0.4;
init_sys.Zeta = 0.5;
init_sys.Td = 0.1;
init_sys.Tz = 0.01;

1-682

pem

Use init_sys, a process model created by direct construction, to
configure the estimation by pem. The Kp, Tw, Zeta, Td, and Tz
coefficients of init_sys are configured with their initial guesses.

Estimate a prediction error minimizing model using measured data.

load iddata1 z1;
opt = procestOptions('Display','on','SearchMethod','lm');
sys = pem(z1,init_sys,opt);

Because init_sys is an idproc model, use the corresponding option
set command, procestOptions, to create an estimation configuring
option set.

sys is an estimated process model, which provides a 70.63% fit to the
measured data (see sys.Report.Fit.FitPercent).

Estimate Nonlinear Grey-Box Model

Estimate the parameters of a nonlinear grey-box model to fit DC motor
data.

Load the experimental data, and specify the signal attributes such as
start time, and units.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmo
data = iddata(y, u, 0.1);
set(data,'Tstart',0,'TimeUnit','s');

Configure the nonlinear grey-box model (idnlgrey) model.

For this example, use the shipped file dcmotor_m.m. To view this file,
enter edit dcmotor_m.m at the MATLAB command prompt.

file_name = 'dcmotor_m';
order = [2 1 2];
parameters = [1; 0.28];
initial_states = [0; 0];
Ts = 0;
init_sys = idnlgrey(file_name,order,parameters,initial_states,Ts);

1-683

pem

set(init_sys,'TimeUnit','s');

setinit(init_sys,'Fixed',{false false});

init_sys is a nonlinear grey-box model with its structure described by
dcmotor_m.m. The model has one input, two outputs and two states, as
specified by order.

setinit(init_sys,'Fixed',{false false}) specifies that the initial
states of init_sys are free estimation parameters.

Estimate the model parameters and initial states.

sys = pem(data,init_sys);

sys is an idnlgrey model, which encapsulates the estimated
parameters and their covariance.

Analyze the estimation result.

compare(data,sys,init_sys);

sys provides a 98.34% fit to the estimated data.

1-684

pem

Algorithms PEM uses numerical optimization to minimize the cost function, a
weighted norm of the prediction error, defined as follows for scalar
outputs:

V G H e tN
t

N
,() = ()

=
∑ 2

1

where e(t) is the difference between the measured output and the
predicted output of the model. For a linear model, this error is defined
by the following equation:

e t H q y t G q u t() () () () ()= −[]−1

1-685

pem

e(t) is a vector and the cost function V G HN ,() is a scalar value. The
subscript N indicates that the cost function is a function of the number
of data samples and becomes more accurate for larger values of N. For
multiple-output models, the previous equation is more complex.

Alternatives You can use estimation commands that are model-type specific for all
model types, except for idnlgrey models. These commands achieve the
same results as pem when an initial model of matching type is provided
as input argument. The following table summarizes the dedicated
estimation commands for each model type.

Function Model Type

ssest idss

tfest idtf

polyest idpoly

procest idproc

greyest idgrey

nlarx idnlarx

nlhw idnlhw

See Also idtf | idpoly | idss | idgrey | idproc | armax | oe | bj |
n4sid | ssest | tfest | procest | greyest | nlhw | nlarx |
resid | compare | idfilt | iddata | idfrd | tfestOptions
| procestOptions | polyestOptions | greyestOptions |
ssestOptions

1-686

pexcit

Purpose Level of excitation of input signals

Syntax Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

Description Data is an iddata object with time- or frequency-domain signals.

Ped is the degree or order of excitation of the inputs in Data. A row
vector of integers with as many components as there are inputs in Data.
The intuitive interpretation of the degree of excitation in an input
is the order of a model that the input is capable of estimating in an
unambiguous way.

Maxnr is the maximum order tested. Default is min(N/3,50), where N is
the number of input data.

Threshold is the threshold level used to measure which singular values
are significant. Default is 1e-9.

References Section 13.2 in Ljung (1999).

See Also advice | iddata | feedback | idnlarx

1-687

plot

Purpose Plot iddata or model objects

Syntax plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)
plot(model)

Description data is the output-input data to be graphed, given as an iddata object.
A split plot is obtained with the outputs on top and the inputs at the
bottom.

One plot for each I/O channel combination is produced. Pressing the
Enter key advances the plot. Typing Ctrl+C aborts the plotting in
an orderly fashion.

To plot a specific interval, use plot(data(200:300)). To plot specific
input/output channels, use plot(data(:,ky,ku)), consistent with the
subreferencing of iddata objects.

If data.intersample = 'zoh', the input is piecewise constant between
sampling points, and it is then graphed accordingly.

To plot severaliddata sets d1,...,dN, use plot(d1,...,dN). I/O
channels with the same experiment name, input name, and output
name are always plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can
be specified

plot(d1,'y:*',d2,'b')

just as in the regular plot command.

model is an idnlarx, or idnlhw model.

See Also iddata

1-688

pole

Purpose Compute poles of dynamic system

Syntax pole(sys)

Description pole(sys) computes the poles p of the SISO or MIMO dynamic system
model sys.

If sys has internal delays, poles are obtained by first setting all internal
delays to zero (creating a zero-order Padé approximation) so that the
system has a finite number of zeros. For some systems, setting delays
to 0 creates singular algebraic loops, which result in either improper or
ill-defined, zero-delay approximations. For these systems, pole returns
an error. This error does not imply a problem with the model sys itself.

Algorithms For state-space models, the poles are the eigenvalues of the A matrix, or
the generalized eigenvalues of A – λE in the descriptor case.

For SISO transfer functions or zero-pole-gain models, the poles are
simply the denominator roots (see roots).

For MIMO transfer functions (or zero-pole-gain models), the poles are
computed as the union of the poles for each SISO entry. If some columns
or rows have a common denominator, the roots of this denominator are
counted only once.

Limitations Multiple poles are numerically sensitive and cannot be computed to high
accuracy. A pole λ with multiplicity m typically gives rise to a cluster of
computed poles distributed on a circle with center λ and radius of order

ρ ε≈ 1/m

where ε is the relative machine precision (eps).

See Also damp | esort | dsort | pzmap | zero

1-689

polydata

Purpose Access polynomial coefficients and uncertainties of identified model

Syntax [A,B,C,D,F] = polydata(sys)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys)
___ = polydata(sys,J1,...,JN)
___ = polydata(___ ,'cell')

Description [A,B,C,D,F] = polydata(sys) returns the coefficients of the
polynomials A, B, C, D, and F that describe the identified model sys. The
polynomials describe the idpoly representation of sys as follows.

• For discrete-time sys:

A q y t
B q

F q
u t nk

C q

D q
e t

 1

1

1

1

1
.

u(t) are the inputs to sys. y(t) are the outputs. e(t) is a white noise
disturbance.

• For continuous-time sys:

A s Y s
B s

F s
U s e

C s

D s
E ss

 .

U(s) are the Laplace transformed inputs to sys. Y(s) are the Laplace
transformed outputs. E(s) is the Laplace transform of a white noise
disturbance.

If sys is an identified model that is not an idpoly model, polydata
converts sys to idpoly form to extract the polynomial coefficients.

[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys) also returns the
uncertainties dA, dB, dC, dD, and dF of each of the corresponding
polynomial coefficients of sys.

___ = polydata(sys,J1,...,JN) returns the polynomial coefficients
for the J1,...,JN entry in the array sys of identified models.

1-690

polydata

___ = polydata(___ ,'cell') returns all polynomials as cell arrays
of double vectors, regardless of the input and output dimensions of sys.

Input
Arguments

sys

Identified model or array of identified models. sys can be
continuous-time or discrete-time. sys can be SISO or MIMO.

J1,...,JN

Indices selecting a particular model from an N-dimensional array sys
of identified models.

Output
Arguments

A,B,C,D,F

Polynomial coefficients of the idpoly representation of sys.

• If sys is a SISO model, each of A, B, C, D, and F is a row vector. The
length of each row vector is the order of the corresponding polynomial.

- For discrete-time sys, the coefficients are ordered in ascending
powers of q–1. For example, B = [1 -4 9] means that
B(q–1) = 1 – 4q–1 + 9q–2.

- For continuous-time sys, the coefficients are ordered in
descending powers of s. For example, B = [1 -4 9] means that
B(s) = s2 – 4s + 9.

• If sys is a MIMO model, each of A, B, C, D, and F is a cell array. The
dimensions of the cell arrays are determined by the input and output
dimensions of sys as follows:

- A — Ny-by-Ny cell array

- B, F — Ny-by-Nu cell array

- C, D — Ny-by-1 cell array

Ny is the number of outputs of sys, and Nu is the number of inputs.

Each entry in a cell array is a row vector that contains the coefficients of
the corresponding polynomial. The polynomial coefficients are ordered
the same way as the SISO case.

1-691

polydata

dA,dB,dC,dD,dF

Uncertainties in the estimated polynomial coefficients of sys.

dA, dB, dC, dD, and dF are row vectors or cell arrays whose dimensions
exactly match the corresponding A, B, C, D, and F outputs.

Each entry in dA, dB, dC, dD, and dF gives the standard deviation of the
corresponding estimated coefficient. For example, dA{1,1}(2) gives the
standard deviation of the estimated coefficient returned at A{1,1}(2).

Examples Polynomial Coefficients of Identified Model and Uncertainties

Extract the polynomial coefficients, and corresponding standard
deviations, of a two-input, two-output identified idpoly model.

Load system data and estimate a 2-input, 2-output model.

load iddata1 z1
load iddata2 z2
data = [z1 z2(1:300)];

nk = [1 1; 1 0];
na = [2 2; 1 3];
nb = [2 3; 1 4];
nc = [2;3];
nd = [1;2];
nf = [2 2;2 1];

sys = polyest(data,[na nb nc nd nf nk]);

The data loaded into z1 and z2 is discrete-time iddata with a sampling
time of 0.1 s. Therefore, sys is a two-input, two-output discrete-time
idpoly model of the form:

A q y t
B q

F q
u t nk

C q

D q
e t

 1

1

1

1

1
.

1-692

polydata

The inputs to polyest set the order of each polynomial in sys.

Use polydata to access the estimated polynomial coefficients of sys and
the uncertainties in those coefficients.

[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(sys);

The outputs A, B, C, D, and F are cell arrays of coefficient vectors or
arrays. The dimensions of the cell arrays are determined by the input
and output dimensions of sys. For example, examine A.

A

A =

[1x3 double] [1x3 double]
[1x2 double] [1x4 double]

A is a 2-by-2 cell array because sys has two outputs. Each entry in A is a
row vector containing identified polynomial coefficients. For example,
examine the second diagonal entry in A.

A{2,2}

ans =

1.0000 -0.8682 -0.2244 0.4467

For discrete-time sys, the coefficients are arranged in order of
increasing powers of q–1. Therefore, A{2,2} corresponds to the
polynomial 1 – 0.8682q–1 – 0.2244q–2 + 0.4467q–3.

Examine the uncertainties dA in the estimated coefficients of A.

dA

dA =

[1x3 double] [1x3 double]

1-693

polydata

[1x2 double] [1x4 double]

The dimensions of dA match those in A. Each entry in dA gives
the standard deviation of the corresponding estimated polynomial
coefficient of A. For example, examine the uncertainties of the second
diagonal entry in A.

dA{2,2}

ans =

0 0.2806 0.4204 0.2024

The lead coefficient of A{2,2} is fixed at 1, and therefore has no
uncertainty. The remaining entries in dA{2,2} are the uncertainties in
the q–1, q–2, and q–3 coefficients, respectively.

See Also idpoly | iddata | tfdata | zpkdata | idssdata | polyest

1-694

polyest

Purpose Estimate polynomial model using time or frequency domain data

Syntax sys = polyest(data,[na nb nc nd nf nk])
sys = polyest(data,[na nb nc nd nf nk],Name,Value)
sys = polyest(data,init_sys)
sys = polyest(data, ___ , opt)

Description sys = polyest(data,[na nb nc nd nf nk]) estimates a polynomial
model, sys, using the time or frequency domain data, data.

sys is of the form

A q y t
B q
F q

u t nk
C q
D q

e t() ()
()
()

()
()
()

()

A(q), B(q), F(q), C(q) and D(q) are polynomial matrices. u(t) is the input,
and nk is the input delay. y(t) is the output and e(t) is the disturbance
signal. na ,nb, nc, nd and nf are the orders of the A(q), B(q), C(q), D(q)
and F(q) polynomials, respectively.

sys = polyest(data,[na nb nc nd nf nk],Name,Value) estimates
a polynomial model with additional attributes of the estimated model
structure specified by one or more Name,Value pair arguments.

sys = polyest(data,init_sys) estimates a polynomial model using
the dynamic system init_sys to configure the initial parameterization.

sys = polyest(data, ___ , opt) estimates a polynomial model using
the option set, opt, to specify estimation behavior.

Tips • In most situations, all the polynomials of an identified polynomial
model are not simultaneously active. Set one or more of the orders
na, nc, nd and nf to zero to simplify the model structure.

For example, you can estimate an Output-Error (OE) model by
specifying na, nc and nd as zero.

Alternatively, you can use a dedicated estimating function for the
simplified model structure. Linear polynomial estimation functions
include oe, bj, arx and armax.

1-695

polyest

Input
Arguments

data

Estimation data.

For time domain estimation, data is an iddata object containing the
input and output signal values.

You can estimate only discrete-time models using time domain data. For
estimating continuous-time models using time domain data, see tfest.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — ‘Frequency’

It may be more convenient to use oe or tfest to estimate a model for
frequency domain data.

na

Order of the polynomial A(q).

na is an Ny-by-Nu matrix of nonnegative integers. Ny is the number of
outputs, and Nu is the number of inputs.

na must be zero if you are estimating a model using frequency domain
data.

nb

Order of the polynomial B(q) + 1.

nb is an Ny-by-Nu matrix of nonnegative integers. Ny is the number of
outputs, and Nu is the number of inputs.

nc

Order of the polynomial C(q).

1-696

polyest

nc is a column vector of nonnegative integers of length Ny. Ny is the
number of outputs.

nc must be zero if you are estimating a model using frequency domain
data.

nd

Order of the polynomial D(q).

nd is a column vector of nonnegative integers of length Ny. Ny is the
number of outputs.

nd must be zero if you are estimating a model using frequency domain
data.

nf

Order of the polynomial F(q).

nf is an Ny-by-Nu matrix of nonnegative integers. Ny is the number of
outputs, and Nu is the number of inputs.

nk

Input-output delay expressed as fixed leading zeros of the B polynomial.

Specify nk as a matrix of nonnegative integers.

nk must be zero when estimating a continuous-time model.

opt

Estimation options.

opt is an options set, created using polyestOptions, that specifies
estimation options including:

• Estimation objective

• Handling of initial conditions

• Numerical search method to be used in estimation

1-697

polyest

init_sys

Dynamic system that configures the initial parameterization of sys.

If init_sys is an idpoly model, polyest uses the parameters and
constraints defined in init_sys as the initial guess for estimating sys.

If init_sys is not an idpoly model, the software first converts
init_sys to an identified polynomial. polyest uses the parameters of
the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses
and constraints for A(q), B(q), F(q), C(q), and D(q).

To specify an initial guess for, say, the A(q) term of init_sys, set
init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the B(q) term of init_sys:

• Set init_sys.Structure.b.Minimum to the minimum B(q) coefficient
values.

• Set init_sys.Structure.b.Maximum to the maximum B(q)
coefficient values.

• Set init_sys.Structure.b.Free to indicate which B(q) coefficients
are free for estimation.

You can similarly specify the initial guess and constraints for the other
polynomials.

If opt is not specified, and init_sys was created by estimation, then
the estimation options from init_sys.Report.OptionsUsed are used.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ioDelay’

1-698

polyest

Transport delays. ioDelay is a numeric array specifying a separate
transport delay for each input/output pair.

For continuous-time systems, specify transport delays in the time unit
stored in the TimeUnit property. For discrete-time systems, specify
transport delays in integer multiples of the sampling period, Ts.

For a MIMO system with Ny outputs and Nu inputs, set ioDelay to
a Ny-by-Nu array. Each entry of this array is a numerical value that
represents the transport delay for the corresponding input/output pair.
You can also set ioDelay to a scalar value to apply the same delay to all
input/output pairs.

Default: 0 for all input/output pairs

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

’IntegrateNoise’

Logical vector specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the
number of outputs.

Setting IntegrateNoise to true for a particular output results in
the model:

1-699

polyest

A q y t
B q
F q

u t nk
C q
D q

e t

q
() ()

()
()

()
()
()

()

 1 1

Where,
1

1 1 q
is the integrator in the noise channel, e(t).

Use IntegrateNoise to create an ARIMAX model.

For example,

load iddata1 z1;
z1 = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');
sys = polyest(z1, [2 2 2 0 0 1],'IntegrateNoise',true);

Output
Arguments

sys

Estimated polynomial model.

sys is an idpoly model.

If data.Ts is zero, sys is a continuous-time model representing:

Y s
B s
F s

U s E s()
()
()

() ()

Y(s), U(s) and E(s) are the Laplace transforms of the time domain
signals y(t), u(t) and e(t), respectively.

Examples Estimate Model with Redundant Parameterization

Estimate a polynomial model with redundant parameterization. That
is, all the polynomials (A, B, C, D, and F) are active.

Obtain input/output data.

load iddata2 z2

Estimate the model.

na = 2;

1-700

polyest

nb = 2;
nc = 3;
nd = 3;
nf = 2;
nk = 1;
sys = polyest(z2,[na nb nc nd nf nk]);

Estimate ARIMAX model

Obtain input/output data.

load iddata1 z1;
data = iddata(cumsum(z1.y),cumsum(z1.u),z1.Ts,'InterSample','foh');

Identify an ARIMAX model. Set the inactive polynomials, F and D,
to zero.

na = 2;
nb = 2;
nc = 2;
nd = 0;
nf = 0;
nk = 1;
sys = polyest(data,[na nb nc nd nf nk],'IntegrateNoise',true);

Estimate Multi-Output ARMAX Model

Estimate a multi-output ARMAX model for a multi-input, multi-output
data set.

Obtain input/output data.

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

1-701

polyest

data is a data set with 2 inputs and 2 outputs. The first input affects
only the first output. Similarly, the second input affects only the second
output.

Estimate the model.

na = [2 2; 2 2];
nb = [2 2; 3 4];
nk = [1 1; 0 0];
nc = [2;2];
nd = [0;0];
nf = [0 0; 0 0];

sys = polyest(data,[na nb nc nd nf nk])

In the estimated ARMAX model, the cross terms, modeling the effect of
the first input on the second output and vice versa, are negligible. If
you assigned higher orders to those dynamics, their estimation would
show a high level of uncertainty.

The F and D polynomials of sys are inactive.

Analyze the results.

h = bodeplot(model);
showConfidence(h,3)

The responses from the cross terms show larger uncertainty.

Alternatives • To estimate a polynomial model using time-series data, use ar.

• Use polyest to estimate a polynomial of arbitrary structure. If the
structure of the estimated polynomial model is known, that is, you
know which polynomials will be active, then use the appropriate
dedicated estimating function. For examples, for an ARX model,
use arx. Other polynomial model estimating functions include, oe,
armax, and bj.

1-702

polyest

• To estimate a continuous-time transfer function, use tfest. You can
also use oe, but only with continuous-time frequency-domain data.

See Also polyestOptions | idpoly | ar | arx | armax | oe | bj |
tfest | procest | ssest | iddata | pem | forecast

1-703

polyestOptions

Purpose Option set for polyest

Syntax opt = polyestOptions
opt = polyestOptions(Name,Value)

Description opt = polyestOptions creates the default options set for polyest.

opt = polyestOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial condition is set to zero.

• 'estimate' — The initial state is treated as an independent
estimation parameter.

• 'backcast' — The initial state is estimated using the best least
squares fit.

• 'auto'— The software chooses the method to handle initial states
based on the estimation data.

Default: 'auto'

’Focus’

1-704

polyestOptions

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

This method provides a stable model.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
This approach minimizes one-step-ahead prediction, which typically
favors fitting small time intervals (higher frequency range). From a
statistical-variance point of view, this weighting function is optimal.
However, this method ignores the approximation aspects (bias) of the
fit, and might not result in a stable model. Use 'stability' when
you want to ensure a stable model.

• 'stability' — Same as 'prediction' but with model stability
enforced.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

1-705

polyestOptions

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. You receive an
estimation result that is the same as if you had prefiltered using
idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

1-706

polyestOptions

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

1-707

polyestOptions

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninne. Eigenvalues less than gamma*max(sv)
of the Hessian are ignored, where sv are the singular values of the
Hessian. The Gauss-Newton direction is computed in the remaining
subspace. gamma has the initial value InitGnaTol (see Advanced
for more information). gamma is increased by the factor LMStep each
time the search fails to find a lower value of the criterion in less than
5 bisections. gamma is decreased by a factor of 2*LMStep each time a
search is successful without any bisections.

• 'lm'— Uses the Levenberg-Marquardt method. The next parameter
value is -pinv(H+d*I)*grad from the previous one. H is the Hessian,
I is the identity matrix, and grad is the gradient. d is a number that
is increased until a lower value of the criterion is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox software. This search method can handle only the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — The algorithm chooses one of the preceding options.
The descent direction is calculated using 'gn', 'gna', 'lm', and
'grad' successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-708

polyestOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-709

polyestOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-710

polyestOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-711

polyestOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [1].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial condition.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-712

polyestOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for polyest.

Examples Create Default Options Set for Polynomial Estimation

opt = polyestOptions;

Specify Options for Polynomial Estimation

Create an options set for polyest using the 'stability' for Focus, and
set the Display to 'on'.

opt = polyestOptions('Focus','stability','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = polyestOptions;
opt.Focus = 'stability';
opt.Display = 'on';

References [1] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

[2] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

1-713

polyestOptions

See Also polyest

1-714

polyreg

Purpose Powers and products of standard regressors

Syntax R = polyreg(model)
R = polyreg(model,'MaxPower',n)
R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)

Description R = polyreg(model) creates an array R of polynomial regressors up to
the power 2. If a model order has input u and output y, na=nb=2, and
delay nk=1, polynomial regressors are y(t−1)2, u(t−1)2, y(t−2)2, u(t−2)2.
model is an idnlarx object. You must add these regressors to the model
by assigning the CustomRegressors model property or by using addreg.

R = polyreg(model,'MaxPower',n) creates an array R of polynomial
regressors up to the power n. Excludes terms of power 1 and cross
terms, such as y(t−1)*u(t−1).

R = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)
creates an array R of polynomial regressors up to the power n
and includes cross terms (products of standards regressors) when
CrossTermVal is 'on'. By default, CrossTermVal is 'off'.

Examples Create polynomial regressors up to order 2:

% Estimate a nonlinear ARX model with
% na=nb=2 and nk=1.
% Nonlinearity estimator is wavenet.

load iddata1
m = nlarx(z1,[2 2 1])

% Create polynomial regressors:
R = polyreg(m);

% Estimate model:
m = nlarx(z1,[2 2 1],'wavenet','CustomReg',R);

% View all model regressors (standard and custom):
getreg(m)

Create polynomial regressors up to order 3:

1-715

polyreg

R = polyreg(m,'MaxPower',3,'CrossTerm','on')

If the model m that has three standard regressors a, b and c , R includes
a^2, b^2, c^2, a*b, a*c, b*c, a^2*b, a^2*c, a*b^2, a*b*c, a*c^2, b^2*c,
b*c^2, a^3, b^3, and c^3.

See Also addreg | customreg | getreg | idnlarx | nlarx

How To • “Identifying Nonlinear ARX Models”

1-716

poly1d

Purpose Class representing single-variable polynomial nonlinear estimator for
Hammerstein-Wiener models

Syntax t=poly1d('Degree',n)
t=poly1d('Coefficients',C)
t=poly1d(n)

Description poly1d is an object that stores the single-variable polynomial nonlinear
estimator for Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=poly1d('Degree',n) creates a polynomial nonlinearity estimator
object of nth degree.

t=poly1d('Coefficients',C) creates a polynomial nonlinearity
estimator object with coefficients C.

t=poly1d(n) a polynomial nonlinearity estimator object of nth degree.

Use evaluate(p,x) to compute the value of the function defined by
the poly1d object p at x.

Tips Use poly1d to define a nonlinear function y F x= () , where F is a
single-variable polynomial function of x:

F x c x c x c n x c nn n() () () () ()()= + + + + +−1 2 11

poly1d
Properties

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(p)
% Get value of Coefficients property
p.Coefficients

1-717

poly1d

Property Name Description

Degree Positive integer specifies the degree of the polynomial
Default=1.

For example:

poly1d('Degree',3)

Coefficients 1-by-(n+1) matrix containing the polynomial coefficients.

Examples Use poly1s to specify the single-variable polynomial nonlinearity
estimator in Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,poly1d('deg',3),[]);

where 'deg' is an abbreviation for the property 'Degree'.

See Also nlhw

1-718

predict

Purpose K-step ahead prediction

Syntax yp = predict(sys,data,K)
yp = predict(sys,data,K,opt)
[yp,x0e,sys_pred] = predict(sys,data,K, ___)
predict(sys,data,K ___)

Description yp = predict(sys,data,K) predicts the output of an identified model,
sys, K steps ahead using input-output data history from data.

yp = predict(sys,data,K,opt) predicts the output using the option
set opt to configure prediction behavior.

[yp,x0e,sys_pred] = predict(sys,data,K, ___) also returns the
estimated initial state, x0e, and a predictor system, sys_pred.

predict(sys,data,K ___) plots the predicted output.

An important use of predict is to evaluate a model’s properties in
the mid-frequency range. Simulation with sim (which conceptually
corresponds to k = inf) can lead to diverging outputs. Such divergence
occurs because sim emphasizes the low-frequency behavior. One
step-ahead prediction is not a powerful test of the model’s properties,
because the high-frequency behavior is stressed. The trivial predictor

ˆ() ()y t y t= −1 can give good predictions in case the sampling of the data
is fast.

Another important use of predict is to evaluate time-series models.
The natural way of studying a time-series model’s ability to reproduce
observations is to compare its k step-ahead predictions with actual data.

For Output-Error models, there is no difference between the k
step-ahead predictions and the simulated output. This lack of difference
occurs because, by definition, Output-Error models only use past inputs
to predict future outputs.

Difference Between forecast and predict Functions

predict predicts the response over the time span of data. forecast
performs prediction into the unseen future, which is a time range beyond

1-719

predict

the last instant of measured data. predict is a tool for validating
the quality of an estimated model. Use predict to determine if the
prediction result matches the observed response in data.OutputData.
If sys is a good prediction model, consider using it with forecast (only
supports linear models).

Input
Arguments

sys

Identified model.

sys may be a linear or nonlinear identified model.

data

Measured input-output data.

Specify data as an iddata object.

If sys is a time-series model, which has no input signals, then specify
data as an iddata object with no inputs, or a matrix of past (already
observed) time-series data.

K

Prediction horizon.

Specify K as a positive integer that is a multiple of the data sample-time.

Default: 1

opt

Prediction options.

opt is an option set, created using predictOptions, that specifies
options including:

• Handling of initial conditions

• Data offsets

1-720

predict

Output
Arguments

yp

Predicted output.

yp is an iddata object.

Outputs up to the time t-K and inputs up to the time instant t are used
to predict the output at the time instant t. The time variable takes
values in the range represented by data.SamplingInstants.

When K = Inf, the predicted output is a pure simulation of the system.

For multi-experiment data, yp contains a predicted data set for each
experiment. The time span of the predicted outputs matches that of
the observed data.

When sys is specified using an idnlhw or idnlgrey model, yp is the
same as the simulated response computed using data.InputData as
input.

x0e

Estimated initial states.

sys_pred

Predictor system.

sys_pred is a dynamic system whose simulation, using
[data.OutputData data.InputData] as input, yields yp.OutputData
as the output.

For discrete-time data, sys_pred is always a discrete-time model.

For multi-experiment data, sys_pred is an array of models, with one
entry for each experiment.

When sys is a nonlinear model, sys_pred is [].

Examples Predict Time-Series Model Response

Simulate a time-series model.

1-721

predict

init_sys = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
data = sim(init_sys,e);

data is an iddata object containing the simulated response data of
a time-series model.

Estimate an ARMAX model for the simulated data.

na = 1;
nb = 2;
sys = armax(data(1:200),[na nb]);

sys is an idpoly model encapsulating the identified ARMAX model for
the simulated data data.

Obtain a 4 step-ahead prediction for the estimated model.

K = 4;
yp = predict(sys,data,K);

Analyze the prediction.

plot(data(201:400),yp(201:400));
legend('Simulated data','Predicted data');

1-722

predict

Use compare to substitute the use of predict and plot.

For example:

compare(data,sys,K);

See Also predictOptions | compare | pe | lsim | sim | simsd | ar |
arx | n4sid | iddata | idpar | forecast

1-723

predictOptions

Purpose Option set for predict

Syntax opt = predictOptions
opt = predictOptions(Name,Value)

Description opt = predictOptions creates the default options set for predict.

opt = predictOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify the handling of initial conditions.

InitialCondition takes one of the following:

• 'z' — Zero initial conditions.

• 'e'— Estimate initial conditions such that the prediction error for
observed output is minimized.

• 'd' — Similar to 'e', but absorbs nonzero delays into the model
coefficients.

• x0 — Numerical column vector denoting initial states. For
multi-experiment data, use a matrix with Ne columns, where Ne is
the number of experiments. Use this option only for state-space and
nonlinear models.

• io — Structure with the following fields:

- Input

- Output

1-724

predictOptions

Use the Input and Output fields to specify the history for a time
interval. This interval must start before the start time of the data
used by predict. In case the data used by predict is a time series
model, specify Input as []. Use a row vector to denote a constant
signal value. The number of columns in Input and Output must
always equal the number of input and output channels, respectively.
For multi-experiment data, specify io as a struct array of Ne
elements, where Ne is the number of experiments.

• x0obj — Specification object created using idpar. Use this object
for discrete-time state-space models only. Use x0obj to impose
constraints on the initial states by fixing their value or specifying
minimum/maximum bounds.

For an idnlgrey model, InitialCondition can also be one of the
following:

• 'fixed' — sys.InitialState determines the values of the initial
states, but all the states are considered fixed for estimation.

• 'model' — sys.InitialState determines the values of the initial
states, which states to estimate and their minimum/maximum
values.

Default: [] (Initial conditions are determined based on how the
model was estimated.)

’InputOffset’

Input signal offset.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data before the input is used to simulate the model.

1-725

predictOptions

Default: []

’OutputOffset’

Output signal offset.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Weight of output for initial condition estimation.

OutputWeight takes one of the following:

• []— No weighting is used. This option is the same as using eye(Ny)
for the output weight, where Ny is the number of outputs.

• 'noise'— Inverse of the noise variance stored with the model.

• matrix — A positive, semidefinite matrix of dimension Ny-by-Ny,
where Ny is the number of outputs.

Default: []

Output
Arguments

opt

Option set containing the specified options for predict.

1-726

predictOptions

Examples Create Default Options Set for Model Prediction

opt = predictOptions;

Specify Options for Model Prediction

Create an options set for predict using zero initial conditions and set
the input offset to 5.

opt = predictOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = predictOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also predict | absorbdelay | idpar

1-727

present

Purpose Display model information, including estimated uncertainty

Syntax present(m)

Description The present function displays the model m, together with the estimated
standard deviations of the parameters, loss function, and Akaike’s Final
Prediction Error (FPE) Criterion (which essentially equals the AIC). It
also displays information about how m was created.

m is linear or nonlinear identified model.

present thus gives more detailed information about the model than the
standard display function.

See Also getpvec | getcov | tfdata | idssdata | polydata | zpkdata

1-728

procest

Purpose Estimate process model using time or frequency data

Syntax sys = procest(data,type)
sys = procest(data,type,Name,Value)
sys = procest(data,init_sys)
sys = procest(data, ___ ,opt)

Description sys = procest(data,type) estimates a process model, sys, using time
or frequency domain data, data. type defines the structure of sys.

sys = procest(data,type,Name,Value) estimates a process model
with additional options specified by one or more Name,Value pair
arguments.

sys = procest(data,init_sys) estimates a process model using the
dynamic system init_sys to configure the initial parameterization.

sys = procest(data, ___ ,opt) estimates a polynomial model using
an option set, opt, to specify estimation behavior.

Input
Arguments

data

Estimation data.

For time domain estimation, data must be an iddata object containing
the input and output signal values.

Time-series models, which are models that contain no measured
inputs, cannot be estimated using procest. Use ar, arx, or armax for
time-series models instead.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — 'Frequency'

1-729

procest

data must have at least one input and one output.

type

Process model structure.

type is an acronym that defines the structure of a process model. The
acronym string is made up of:

• P — All 'Type' acronyms start with this letter.

• 0, 1, 2, or 3 — Number of time constants (poles) to be modeled.
Possible integrations (poles in the origin) are not included in this
number.

• I — Integration is enforced (self-regulating process).

• D — Time delay (dead time).

• Z — Extra numerator term, a zero.

• U — Underdamped modes (complex-valued poles) permitted. If U is
not included in type, all poles must be real. The number of poles
must be 2 or 3.

For information regarding how type affects the structure of a process
model, see idproc.

For multiple input/output pairs use a cell array of acronyms, with one
entry for each input/output pair.

opt

Estimation options.

opt is an options set, created using procestOptions, that specifies
options including:

• Estimation objective

• Handling on initial conditions and disturbance component

• Numerical search method to be used in estimation

1-730

procest

init_sys

Dynamic system that configures the initial parameterization of sys.

If init_sys is an idproc model, procest uses the parameters and
constraints defined in init_sys as the initial guess for estimating sys.

If init_sys is not an idproc model, the software first converts
init_sys to an identified process model. procest uses the parameters
of the resulting model as the initial guess for estimation.

Use the Structure property of init_sys to configure initial guesses
and constraints for Kp, Tp1, Tp2, Tp3, Tw, Zeta, Td, and Tz.

To specify an initial guess for, say, the Tp1 parameter of init_sys, set
init_sys.Structure.Tp1.Value as the initial guess.

To specify constraints for, say, the Tp2 parameter of init_sys:

• Set init_sys.Structure.Tp2.Minimum to the minimum Tp2 value.

• Set init_sys.Structure.Tp2.Maximum to the maximum Tp2 value.

• Set init_sys.Structure.Tp2.Free to indicate if Tp2 is a free
parameter for estimation.

You can similarly specify the initial guess and constraints for the other
parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay
for each input channel. Specify input delays in the time unit stored
in the TimeUnit property.

1-731

procest

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

Output
Arguments

sys

Identified process model.

sys is an idproc model with a structure defined by type.

Examples Estimate a First Order Plus Dead Time Model

Obtain the measured input/output data.

load iddemo_heatexchanger_data;
data = iddata(pt,ct,Ts);

Estimate a first-order plus dead time process model.

type = 'P1D';

sys = procest(data,type);

Specify Parameter Initial Values for Estimated Process Model

Estimate a process model after specifying initial guesses for parameter
values and bounding them.

Obtain input/output data.

data = idfrd(idtf([10 2],[1 1.3 1.2],'iod',0.45),logspace(-2,2,256));

Specify the estimation initializing model.

type = 'P2UZD';
init_sys = idproc(type);

1-732

procest

init_sys.Structure.Kp.Value = 1;
init_sys.Structure.Tw.Value = 2;
init_sys.Structure.Zeta.Value = 0.1;
init_sys.Structure.Td.Value = 0;
init_sys.Structure.Tz.Value = 1;
init_sys.Structure.Kp.Minimum = 0.1;
init_sys.Structure.Kp.Maximum = 10;
init_sys.Structure.Td.Maximum = 1;
init_sys.Structure.Tz.Maximum = 10;

Specify estimation options.

opt = procestOptions('Display','full','InitialCondition','Zero');

opt.SearchMethod = 'lm';
opt.SearchOption.MaxIter = 100;

Estimate the process model.

sys = procest(data,init_sys,opt);

Compare the data to the estimated model.

compare(data,sys,init_sys);

Detect Overparameterization of Estimated Model

Obtain input/output data.

load iddata1 z1
load iddata2 z2
data = [z1, z2(1:300)];

data is a data set with 2 inputs and 2 outputs. The first input affects
only the first output. Similarly, the second input affects only the second
output.

In the estimated process model, the cross terms, modeling the effect of
the first input on the second output and vice versa, should be negligible.

1-733

procest

If higher orders are assigned to those dynamics, their estimations show
a high level of uncertainty.

Estimate the process model.

type = 'P2UZ';

sys = procest(data,type);

The type variable denotes a model with complex-conugate pair of poles,
a zero, and a delay.

To evaluate the uncertainties, plot the frequency response.

w = linspace(0,20*pi,100);
h = bodeplot(sys,w);
showConfidence(h);

See Also procestOptions | idproc | ssest | tfest | polyest | ar |
arx | oe | bj

1-734

procestOptions

Purpose Options set for procest

Syntax opt = procestOptions
opt = procestOptions(Name,Value)

Description opt = procestOptions creates the default options set for procest.

opt = procestOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify how initial conditions are handled during estimation.

InitialCondition requires one of the following values:

• 'zero' — The initial condition is set to zero.

• 'estimate' — The initial condition is treated as an independent
estimation parameter.

• 'backcast'— The initial condition is estimated using the best least
squares fit.

• 'auto' — The software chooses the method to handle initial
condition based on the estimation data.

Default: 'auto'

’DisturbanceModel’

Specify how the handling of additive noise (H) during estimation for
the model

1-735

procestOptions

y G s u H s e () ()

e is white noise, u is the input and y is the output.

H(s) is stored in the NoiseTF property of the numerator and
denominator of idproc models.

DisturbanceModel requires one of the following strings:

• 'none' — H is fixed to one.

• 'estimate'— H is treated as an estimation parameter. The software
uses the value of the NoiseTF property as the initial guess.

• 'ARMA1'— The software estimates H as a first-order ARMA model

1
1

cs
ds

• 'ARMA2'— The software estimates H as a second-order ARMA model

1

1
1 2

2

1 2
2

c s c s

d s d s

• 'fixed'— The software fixes the value of the NoiseTF property of
the idproc model as the value of H.

Note A noise model cannot be estimated using frequency domain data.

Default: 'estimate'

’Focus’

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

1-736

procestOptions

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus can take the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power. This method provides a stable model.

• prediction — Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
The weighting function minimizes the one-step-ahead prediction.
This approach typically favors fitting small time intervals (higher
frequency range). From a statistical-variance point of view, this
weighting function is optimal. However, this method neglects the
approximation aspects (bias) of the fit. Use 'stability' when you
want to ensure a stable model.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

1-737

procestOptions

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. You receive an
estimation result that is the same as if you had first prefiltered
using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same length
as the frequency vector of the data set, Data.Frequency. Each input
and output response in the data is multiplied by the corresponding
weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

1-738

procestOptions

Specify InputOffset as one of the following:

• 'estimate'— The software treats the input offsets as an estimation
parameter.

• 'auto'— The software chooses the method to handle input offsets
based on the estimation data and the model structure. The estimation
either assumes zero input offset or estimates the input offset.

For example, the software estimates the input offset for a model that
contains an integrator.

• A column vector of length Nu, where Nu is the number of inputs.

Use [] to specify no offsets.

In case of multi-experiment data, specify InputOffset as a
Nu-by-Ne matrix. Nu is the number of inputs, and Ne is the number
of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

• A parameter object, constructed using param.Continuous, that
imposes constraints on how the software estimates the input offset.

For example, create a parameter object for a 2-input model
estimation. Specify the first input offset as fixed to zero and the
second input offset as an estimation parameter.

opt = procestOptions;
u0 = param.Continuous('u0',[0;NaN]);
u0.Free(1) = false;
opt.Inputoffset = u0;

Default: 'auto'

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

1-739

procestOptions

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Specifies criterion used during minimization.

OutputWeight can have the following values:

• 'noise'— Minimize det(’*)E E , where E represents the prediction
error. This choice is optimal in a statistical sense and leads to the
maximum likelihood estimates when nothing is known about the
variance of the noise. It uses the inverse of the estimated noise
variance as the weighting function.

• Positive, semidefinite symmetric matrix (W) — Minimize the trace of
the weighted prediction error matrix trace(E'*E*W). E is the matrix
of prediction errors, with one column for each output. W is the positive
semidefinite symmetric matrix of size equal to the number of outputs.
Use W to specify the relative importance of outputs in multiple-input
multiple-output models, or the reliability of corresponding data.

This option is relevant only for multi-input, multi-output models.

• []— The software chooses between the 'noise' or using the identity
matrix for W.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

1-740

procestOptions

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [2]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular
values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). gamma is increased by the
factor LMStep each time the search fails to find a lower value of the
criterion in less than 5 bisections. gamma is decreased by a factor of
2*LMStep each time a search is successful without any bisections.

• 'lm' — Uses the Levenberg-Marquardt method so that the next
parameter value is -pinv(H+d*I)*grad from the previous one, where
H is the Hessian, I is the identity matrix, and grad is the gradient.
d is a number that is increased until a lower value of the criterion
is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox software. This search method can handle only the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — The algorithm chooses one of the preceding options.
The descent direction is calculated using 'gn', 'gna', 'lm', and
'grad' successively at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-741

procestOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-742

procestOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-743

procestOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-744

procestOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [1].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial condition.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-745

procestOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

Output
Arguments

opt

Option set containing the specified options for procest.

Examples Create Default Options Set for Process Model Estimation

opt = procestOptions;

Specify Options for Process Model Estimation

Create an options set for procest using the 'stability' for Focus and
set the Display to 'on'.

opt = procestOptions('Focus','stability','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = procestOptions;
opt.Focus = 'stability';
opt.Display = 'on';

References [1] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

[2] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates”. Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

1-746

procestOptions

See Also procest | idproc | idfilt

1-747

pwlinear

Purpose Class representing piecewise-linear nonlinear estimator for
Hammerstein-Wiener models

Syntax t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)

Description pwlinear is an object that stores the piecewise-linear nonlinear
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

t=pwlinear('NumberOfUnits',N) creates a piecewise-linear
nonlinearity estimator object with N breakpoints.

t=pwlinear('BreakPoints',BP) creates a piecewise-linear
nonlinearity estimator object with breakpoints at values BP.

t=pwlinear(Property1,Value1,...PropertyN,ValueN) creates a
piecewise-linear nonlinearity estimator object specified by properties in
“pwlinear Properties” on page 1-749.

Use evaluate(p,x) to compute the value of the function defined by
the pwlinear object p at x.

Tips Use pwlinear to define a nonlinear function y F x= () , where F is a
piecewise-linear (affine) function of x and there are n breakpoints (xk,yk),
k = 1,...,n. yk = F(xk). F is linearly interpolated between the breakpoints.
y and x are scalars.

F is also linear to the left and right of the extreme breakpoints. The
slope of these extension is a function of xi and yi breakpoints. The
breakpoints are ordered by ascending x-values, which is important
when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and
the values actually stored in the object because the toolbox represent
breakpoints differently internally.

1-748

pwlinear

pwlinear
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(p)
% Get value of NumberOfUnits property
p.NumberOfUnits

Property Name Description

NumberOfUnits Integer specifies the number of breakpoints.
Default=10.

For example:

pwlinear('NumberOfUnits',5)

BreakPoints 2-by-n matrix containing the breakpoint x and y value,
specified using the following format:

[x1,x2,, xn;y1, y2, ..., yn].

If set to a 1-by-n vector, the values are interpreted as x-values
and the corresponding y-values are set to zero.

Examples Use pwlinear to specify the piecewise nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,pwlinear('Br',[-1:0.1:1]),[]);

The piecewise nonlinearity is initialized at the specified breakpoints.
The breakpoint values are adjusted to the estimation data by nlhw.

See Also nlhw

1-749

pzmap

Purpose Pole-zero plot of dynamic system

Syntax pzmap(sys)
pzmap(sys1,sys2,...,sysN)
[p,z] = pzmap(sys)

Description pzmap(sys) creates a pole-zero plot of the continuous- or discrete-time
dynamic system model sys. For SISO systems, pzmap plots the transfer
function poles and zeros. For MIMO systems, it plots the system poles
and transmission zeros. The poles are plotted as x’s and the zeros are
plotted as o’s.

pzmap(sys1,sys2,...,sysN) creates the pole-zero plot of multiple models
on a single figure. The models can have different numbers of inputs and
outputs and can be a mix of continuous and discrete systems.

[p,z] = pzmap(sys) returns the system poles and (transmission) zeros
in the column vectors p and z. No plot is drawn on the screen.

You can use the functions sgrid or zgrid to plot lines of constant
damping ratio and natural frequency in the s- or z-plane.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Pole-Zero Plot of Dynamic System

Plot the poles and zeros of the continuous-time system

H s
s s

s s
() = + +

+ +
2 5 1

2 3

2

2

H = tf([2 5 1],[1 2 3]); sgrid
pzmap(H)
grid on

1-750

pzmap

Example 2

Plot the pzmap for a 2-input-output discrete-time IDSS model.

A = [0.1 0; 0.2 0.9]; B = [.1 .2; 0.1 .02]; C = [10 20; 2 -5]; D = [1 2; 0 1];

sys = idss(A,B,C,D, 'Ts', 0.1);

Algorithms pzmap uses a combination of pole and zero.

See Also damp | esort | dsort | pole | rlocus | sgrid | zgrid | zero |
iopzmap

1-751

pzoptions

Purpose Create list of pole/zero plot options

Syntax P = pzoptions
P = pzoption('cstprefs')

Description P = pzoptions returns a list of available options for pole/zero plots
(pole/zero, input-output pole/zero and root locus) with default values
set.. You can use these options to customize the pole/zero plot
appearance from the command line.

P = pzoption('cstprefs') initializes the plot options with the options
you selected in the Control System Toolbox Preferences Editor. For
more information about the editor, see “Toolbox Preferences Editor” in
the User’s Guide documentation.

This table summarizes the available pole/zero plot options.

Option Description

Title, XLabel, YLabel Label text and style

TickLabel Tick label style

Grid Show or hide the grid
Specified as one of the following
strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes

Xlim, Ylim Axes limits

IOGrouping Grouping of input-output pairs
Specified as one of the
following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles

1-752

pzoptions

Option Description

InputVisible, OutputVisible Visibility of input and output
channels

FreqUnits Frequency units, specified as one
of the following strings:

• 'Hz'

• 'rad/second'

• 'rpm'

• 'kHz'

• 'MHz'

• 'GHz'

• 'rad/nanosecond'

• 'rad/microsecond'

• 'rad/millisecond'

• 'rad/minute'

• 'rad/hour'

• 'rad/day'

• 'rad/week'

• 'rad/month'

• 'rad/year'

• 'cycles/nanosecond'

• 'cycles/microsecond'

• 'cycles/millisecond'

• 'cycles/hour'

• 'cycles/day'

1-753

pzoptions

Option Description

• 'cycles/week'

• 'cycles/month'

• 'cycles/year'

Default: 'rad/s'

You can also specify 'auto'
which uses frequency units
rad/TimeUnit relative to system
time units specified in the
TimeUnit property. For multiple
systems with different time units,
the units of the first system are
used.

TimeUnits Time units, specified as one of the
following strings:
• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

1-754

pzoptions

Option Description

You can also specify 'auto'which
uses time units specified in the
TimeUnit property of the input
system. For multiple systems
with different time units, the
units of the first system is used.

ConfidenceRegionNumberSD Number of standard deviations
to use when displaying the
confidence region characteristic
for identified models (valid only
iopzplot).

Examples In this example, you enable the grid option before creating a plot.

P = pzoptions; % Create set of plot options P
P.Grid = 'on'; % Set the grid to on in options
h = rlocusplot(tf(1,[1,.2,1,0]),P);

The following root locus plot is created with the grid enabled.

1-755

pzoptions

See Also getoptions | iopzplot | pzplot | setoptions

1-756

pzplot

Purpose Pole-zero map of dynamic system model with plot customization options

Syntax h = pzplot(sys)
pzplot(sys1,sys2,...)
pzplot(AX,...)
pzplot(..., plotoptions)

Description h = pzplot(sys) computes the poles and (transmission) zeros of the
dynamic system model sys and plots them in the complex plane. The
poles are plotted as x’s and the zeros are plotted as o’s. It also returns
the plot handle h. You can use this handle to customize the plot with
the getoptions and setoptions commands. Type

help pzoptions

for a list of available plot options.

pzplot(sys1,sys2,...) shows the poles and zeros of multiple models
sys1,sys2,... on a single plot. You can specify distinctive colors for each
model, as in

pzplot(sys1,'r',sys2,'y',sys3,'g')

pzplot(AX,...) plots into the axes with handle AX.

pzplot(..., plotoptions) plots the poles and zeros with the options
specified in plotoptions. Type

help pzoptions

for more detail.

The function sgrid or zgrid can be used to plot lines of constant
damping ratio and natural frequency in the s- or z-plane.

For arrays sys of dynamic system models, pzmap plots the poles and
zeros of each model in the array on the same diagram.

1-757

pzplot

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Use the plot handle to change the color of the plot’s title.

sys = rss(3,2,2);
h = pzplot(sys);
p = getoptions(h); % Get options for plot.
p.Title.Color = [1,0,0]; % Change title color in options.
setoptions(h,p); % Apply options to plot.

See Also getoptions | pzmap | setoptions | iopzplot

1-758

rarmax

Purpose Estimate recursively parameters of ARMAX or ARMA models

Syntax thm = rarmax(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rarmax(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the ARMAX model structure

A q y t B q u t nk C q e t() () () () () ()= − +

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [na nb nc nk]

where na, nb, and nc are the orders of the ARMAX model, and nk is the
delay. Specifically,

na A q a q a q

nb B q b b q b q

na
na

nb

:

:

() ...

() ...

= + + +

= + + +

− −

−

1 1
1

1 2
1 −− +

− −= + + +

nb

nc
ncnc q c q c q

1

1
11: C() ...

See “What Are Polynomial Models?” for more information.

If z represents a time series y and nn = [na nc], rarmax estimates the
parameters of an ARMA model for y.

A q y t C q e t() () () ()=

Only single-input, single-output models are handled by rarmax. Use
rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order:

1-759

rarmax

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,c1,...,cnc]

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rarmax with the same model orders. (This call
could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithms The general recursive prediction error algorithm (11.44), (11.47)
through (11.49) of Ljung (1999) is implemented. See “Algorithms for
Recursive Estimation” for more information.

Examples Compute and plot, as functions of time, the four parameters in a
second-order ARMA model of a time series given in the vector y. The
forgetting factor algorithm with a forgetting factor of 0.98 is applied.

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

1-760

rarx

Purpose Estimate parameters of ARX or AR models recursively

Syntax thm = rarx(z,nn,adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0)

Description thm = rarx(z,nn,adm,adg) estimates the parameters thm of
single-output ARX model from input-output data z and model orders nn
using the algorithm specified by adm and adg. If z is a time series y and
nn = na, rarx estimates the parameters of a single-output AR model.

[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,P0,phi0) estimates
the parameters thm, the predicted output yhat, final values of the
scaled covariance matrix of the parameters P, and final values of the
data vector phi of single-output ARX model from input-output data z
and model orders nn using the algorithm specified by adm and adg. If
z is a time series y and nn = na, rarx estimates the parameters of
a single-output AR model.

Definitions The general ARX model structure is:

A q y t B q u t nk e t() () () () ()= − +

The orders of the ARX model are:

na A q a q a q

nb B q b b q b q

na
na

nb

:

:

() ...

() ...

= + + +

= + + +

− −

−

1 1
1

1 2
1 −− +nb 1

Models with several inputs are defined, as follows:

A(q)y(t) = B1(q)u1(t–nk1)+...+Bnuunu(t–nknu)+e(t)

Input
Arguments

z
Name of the matrix iddata object that represents the input-output
data or a matrix z = [y u], where y and u are column vectors.

For multiple-input models, the u matrix contains each input as a
column vector:

1-761

rarx

u = [u1 ... unu]

nn
For input-output models, specifies the structure of the ARX model
as:

nn = [na nb nk]

where na and nb are the orders of the ARX model, and nk is the
delay.

For multiple-input models, nb and nk are row vectors that define
orders and delays for each input.

For time-series models, nn = na, where na is the order of the AR
model.

Note The delay nk must be larger than 0. If you want nk =
0, shift the input sequence appropriately and use nk = 1 (see
nkshift).

adm and adg
adm = 'ff' and adg = lam specify the forgetting factor algorithm
with the forgetting factor λ=lam. This algorithm is also known as
recursive least squares (RLS). In this case, the matrix P has the
following interpretation: R2/2 * P is approximately equal to the
covariance matrix of the estimated parameters.R2 is the variance
of the innovations (the true prediction errors e(t)).

adm ='ug' and adg = gam specify the unnormalized gradient
algorithm with gain gamma = gam. This algorithm is also known
as the normalized least mean squares (LMS).

1-762

rarx

adm ='ng' and adg = gam specify the normalized gradient or
normalized least mean squares (NLMS) algorithm. In these cases,
P is not applicable.

adm ='kf' and adg =R1 specify the Kalman filter based algorithm
with R2=1 and R1 = R1. If the variance of the innovations e(t)
is not unity but R2; then R2* P is the covariance matrix of the
parameter estimates, while R1 = R1 /R2 is the covariance matrix of
the parameter changes.

th0
Initial value of the parameters in a row vector, consistent with
the rows of thm.

Default: All zeros.

P0
Initial values of the scaled covariance matrix of the parameters.

Default: 104 times the identity matrix.

phi0
The argument phi0 contains the initial values of the data vector:

φ(t) = [y(t–1),...,y(t–na),u(t–1),...,u(t–nb–nk+1)]

If z = [y(1),u(1); ... ;y(N),u(N)], phi0 = φ(1) and phi =
φ(N). For online use of rarx, use phi0, th0, and P0 as the previous
outputs phi, thm (last row), and P.

Default: All zeros.

Output
Arguments

thm
Estimated parameters of the model. The kth row of thm contains
the parameters associated with time k; that is, the estimate
parameters are based on the data in rows up to and including row
k in z. Each row of thm contains the estimated parameters in
the following order:

1-763

rarx

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

For a multiple-input model, the b are grouped by input. For
example, the b parameters associated with the first input are
listed first, and the b parameters associated with the second input
are listed next.

yhat
Predicted value of the output, according to the current model; that
is, row k of yhat contains the predicted value of y(k) based on
all past data.

P
Final values of the scaled covariance matrix of the parameters.

phi
phi contains the final values of the data vector:

φ(t) = [y(t–1),...,y(t–na),u(t–1),...,u(t–nb–nk+1)]

Examples Adaptive noise canceling: The signal y contains a component that
originates from a known signal r. Remove this component by recursively
estimating the system that relates r to y using a sixth-order FIR model
and the NLMS algorithm.

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

If this is an online application, you can plot the best estimate of the
signal y - noise at the same time as the data y and u become available,
use the following code:

phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);

1-764

rarx

axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end

This example uses a forgetting factor algorithm with a forgetting factor
of 0.98. readAD is a function that reads the value of an A/D converter at
the indicated time instant.

See Also nkshift | rarmax | rbj | roe | rpem | rplr

How To • “Algorithms for Recursive Estimation”

1-765

rbj

Purpose Estimate recursively parameters of Box-Jenkins models

Syntax thm = rbj(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rbj(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the Box-Jenkins model structure

y t
B q
F q

u t nk
C q
D q

e t()
()
()

()
()
()

()= − +

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata object
or a matrix z = [y u] where y and u are column vectors. nn is given as

nn = [nb nc nd nf nk]

where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and
nk is the delay. Specifically,

nb B q b b q b q

nc C q c q c

nb
nb

n

:

:

() ...

() ...

= + + +

= + + +

− − +

−
1 2

1 1

1
11 cc

nc

nd
nd

q

nd D q d q d q

nf F q f q

−

− −

−

= + + +

= + +

:

:

() ...

() ...

1

1

1
1

1
1 ++ −f qnf

nf

See “What Are Polynomial Models?” for more information.

Only single-input, single-output models are handled by rbj. Use rpem
for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

thm(k,:) = [b1,...,bnb,c1,...,cnc,d1,...,dnd,f1,...,fnf]

1-766

rbj

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adm and adg.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to rbj with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithms The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

See Also nkshift | rarmax | rarx | roe | rpem | rplr

1-767

realdata

Purpose Determine whether iddata is based on real-valued signals

Syntax realdata(data)

Description realdata returns 1 if

• data contains only real-valued signals.

• data contains frequency-domain signals, obtained by Fourier
transformation of real-valued signals.

Otherwise realdata returns 0.

Notice the difference with isreal:

load iddata1
isreal(z1); % returns 1
zf = fft(z1);
isreal(zf) % returns 0
realdata(zf) % returns 1
zf = complex(zf) % adds negative frequencies to zf
realdata(zf) % still returns 1

1-768

repsys

Purpose Replicate and tile models

Syntax rsys = repsys(sys,[M N])
rsys = repsys(sys,N)
rsys = repsys(sys,[M N S1,...,Sk])

Description rsys = repsys(sys,[M N]) replicates the model sys into an M-by-N
tiling pattern. The resulting model rsys has size(sys,1)*M outputs
and size(sys,2)*N inputs.

rsys = repsys(sys,N) creates an N-by-N tiling.

rsys = repsys(sys,[M N S1,...,Sk]) replicates and tiles sys along
both I/O and array dimensions to produce a model array. The indices S
specify the array dimensions. The size of the array is [size(sys,1)*M,
size(sys,2)*N, size(sys,3)*S1, ...].

Tips rsys = repsys(sys,N) produces the same result as rsys =
repsys(sys,[N N]). To produce a diagonal tiling, use rsys =
sys*eye(N).

Input
Arguments

sys

Model to replicate.

M

Number of replications of sys along the output dimension.

N

Number of replications of sys along the input dimension.

S

Numbers of replications of sys along array dimensions.

Output
Arguments

rsys

Model having size(sys,1)*M outputs and size(sys,2)*N inputs.

1-769

repsys

If you provide array dimensions S1,...,Sk, rsys is an array of dynamic
systems which each have size(sys,1)*M outputs and size(sys,2)*N
inputs. The size of rsys is [size(sys,1)*M, size(sys,2)*N,
size(sys,3)*S1, ...].

Examples Replicate a SISO transfer function to create a MIMO transfer function
that has three inputs and two outputs.

sys = tf(2,[1 3]);
rsys = repsys(sys,[2 3]);

The preceding commands produce the same result as:

sys = tf(2,[1 3]);
rsys = [sys sys sys; sys sys sys];

Replicate a SISO transfer function into a 3-by-4 array of two-input,
one-output transfer functions.

sys = tf(2,[1 3]);
rsys = repsys(sys, [1 2 3 4]);

To check the size of rsys, enter:

size(rsys)

This command produces the result:

3x4 array of transfer functions.
Each model has 1 outputs and 2 inputs.

See Also append

1-770

resample

Purpose Resample time-domain data by decimation or interpolation (requires
Signal Processing Toolbox software)

Syntax resample(data,P,Q)
resample(data,P,Q,order)

Description resample(data,P,Q) resamples data such that the data is interpolated
by a factor P and then decimated by a factor Q. resample(z,1,Q) results
in decimation by a factor Q.

resample(data,P,Q,order) filters the data by applying a filter of
specified order before interpolation and decimation.

Input
Arguments

data
Name of time-domain iddata object. Can be input-output or
time-series data.

Data must be sampled at equal time intervals.

P, Q
Integers that specify the resampling factor, such that the new
sampling interval is Q/P times the original one.

(Q/P)>1 results in decimation and (Q/P)<1 results in
interpolation.

order
Order of the filters applied before interpolation and decimation.

Default: 10

Algorithms If you have installed the Signal Processing Toolbox software, resample
calls the Signal Processing Toolbox resample function. The algorithm
takes into account the intersample characteristics of the input signal,
as described by data.InterSample.

Examples In this example, you increase the sampling rate by a factor of 1.5 and
compare the resampled and the original data signals.

1-771

resample

plot(u)
ur = resample(u,3,2);
plot(u,ur)

See Also idresamp

1-772

reshape

Purpose Change shape of model array

Syntax sys = reshape(sys,s1,s2,...,sk)
sys = reshape(sys,[s1 s2 ... sk])

Description sys = reshape(sys,s1,s2,...,sk) (or, equivalently, sys =
reshape(sys,[s1 s2 ... sk])) reshapes the LTI array sys into an
s1-by-s2-by-...-by-sk model array. With either syntax, there must be
s1*s2*...*sk models in sys to begin with.

Examples Change the shape of a model array from 2x3 to 6x1.

% Create a 2x3 model array.
sys = rss(4,1,1,2,3);
% Confirm the size of the array.
size(sys)

This input produces the following output:

2x3 array of state-space models
Each model has 1 output, 1 input, and 4 states.

Change the shape of the array.

sys1 = reshape(sys,6,1);
size(sys1)

This input produces the following output:

6x1 array of state-space models
Each model has 1 output, 1 input, and 4 states.

See Also ndims | size

1-773

resid

Purpose Compute and test model residuals (prediction errors)

Syntax resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

Description data contains the output-input data as an iddata object. Both
time-domain and frequency-domain data are supported. data can also
be an idfrd object.

m is any linear or nonlinear identified model.

In all cases the residuals e associated with the data and the model are
computed. This is done as in the command pe with a default choice
of init.

When called without output arguments, resid produces a plot. The plot
can be one of three kinds depending on the argument Type:

• Type = 'Corr' (only available for time-domain data): The
autocorrelation function of e and the cross correlation between e
and the input(s) u are computed and displayed. The 99% confidence
intervals for these values are also computed and shown as a yellow
region. The computation of the confidence region is done assuming
e to be white and independent of u. The functions are displayed up
to lag M, which is 25 by default.

• Type = 'ir': The impulse response (up to lag M, which is 25 by
default) from the input to the residuals is plotted with a 99%
confidence region around zero marked as a yellow area. Negative
lags up to M/4 are also included to investigate feedback effects. The
result is the same as impulse(e,'sd',2.58,M).

• Type = 'fr': The frequency response from the input to the residuals
(based on a high-order FIR model) is shown as a Bode plot. A 99%
confidence region around zero is also marked as a yellow area.

The default for time-domain data is Type = 'Corr'. For
frequency-domain data, the default is Type = 'fr'.

1-774

resid

With an output argument, no plot is produced, and e is returned with
the residuals (prediction errors) associated with the model and the data.
It is an iddata object with the residuals as outputs and the input in
data as inputs. That means that e can be directly used to build model
error models, that is, models that describe the dynamics from the input
to the residuals (which should be negligible if m is a good description
of the system).

Examples Here are some typical model validation commands.

e = resid(m,data);
plot(e)
compare(data,m);

To compute a model error model, that is, a model from the input to
the residuals to see if any essential unmodeled dynamics are left, do
the following:

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,'fill')

References Ljung (1999), Section 16.6.

See Also compare | predict | sim | simsd

1-775

retrend

Purpose Add offsets or trends to data signals

Syntax data = retrend(data_d,T)

Description data = retrend(data_d,T) returns a data object data by adding the
trend information T to each signal in data_d. data_d is a time-domain
iddata object. T is an TrendInfo object.

Examples Subtract means from input-output signals, estimate a linear model,
and retrend the simulated output:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Remove the mean from the data
[data_d,T] = detrend(data,0)
% Estimate a linear ARX model
m = arx(data_d,[2 2 1])
% Simulate the model output
% with zero initial states
y_sim = sim(m,data_d(:,[],:));
% Retrend the simulated model output
y_tot = retrend(y_sim,T);

See Also getTrend | detrend | TrendInfo

How To • “Handling Offsets and Trends in Data”

1-776

roe

Purpose Estimate recursively output-error models (IIR-filters)

Syntax thm = roe(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the output-error model structure

y t
B q
F q

u t nk e t()
()
()

() ()= − +

are estimated using a recursive prediction error method.

The input-output data are contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. nn
is given as

nn = [nb nf nk]

where nb and nf are the orders of the output-error model, and nk is the
delay. Specifically,

nb B q b b q b q

nf F q f q f

nb
nb

n

:

:

() ...

() ...-

= + + +

= + + +

− − +
1 2

1 1

1
11 ff

nfq-

See “What Are Polynomial Models?” for more information.

Only single-input, single-output models are handled by roe. Use rpem
for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z.

Each row of thm contains the estimated parameters in the following
order.

thm(k,:) = [b1,...,bnb,f1,...,fnf]

1-777

roe

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively, of
the scaled covariance matrix of the parameters. See rarx. The default
value of P0 is 104 times the unit matrix. The arguments phi0, psi0,
phi, and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen
model orders. The normal choice of phi0 and psi0 is to use the outputs
from a previous call to roe with the same model orders. (This call could
be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithms The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

See Also nkshift | rarmax | rarx | rbj | rpem | rplr

1-778

rpem

Purpose Estimate general input-output models using recursive prediction-error
minimization method

Syntax thm = rpem(z,nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,P0,phi0,psi0)

Description The parameters of the general linear model structure

A q y t
B q
F q

u t nk
B q
F q

u t nk
Cnu

nu
nu nu() ()

()
()

() ...
()
()

()= − + + − +1

1
1 1

(()
()

()
q

D q
e t

are estimated using a recursive prediction error method.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. (In
the multiple-input case, u contains one column for each input.) nn
is given as

nn = [na nb nc nd nf nk]

where na, nb, nc, nd, and nf are the orders of the model, and nk is
the delay. For multiple-input systems, nb, nf, and nk are row vectors
giving the orders and delays of each input. See “What Are Polynomial
Models?” for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row
of thm contains the parameters associated with time k; that is, they are
based on the data in the rows up to and including row k in z. Each row
of thm contains the estimated parameters in the following order.

thm(k,:) = [a1,a2,...,ana,b1,...,bnb,...
c1,...,cnc,d1,...,dnd,f1,...,fnf]

For multiple-input systems, the B part in the above expression is
repeated for each input before the C part begins, and the F part is also
repeated for each input. This is the same ordering as in m.par.

1-779

rpem

yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the predicted value of y(k) based
on all past data.

The actual algorithm is selected with the two arguments adg and adm.
These are described under rarx.

The input argument th0 contains the initial value of the parameters,
a row vector consistent with the rows of thm. The default value of th0
is all zeros.

The arguments P0 and P are the initial and final values, respectively,
of the scaled covariance matrix of the parameters. See rarx. The
default value of P0 is 104 times the unit matrix. The arguments phi0,
psi0, phi, and psi contain initial and final values of the data vector
and the gradient vector, respectively. The sizes of these depend on the
chosen model orders. The normal choice of phi0 and psi0 is to use the
outputs from a previous call to rpem with the same model orders. (This
call could be a dummy call with default input arguments.) The default
values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0. If you
want nk = 0, shift the input sequence appropriately and use nk = 1.

Algorithms The general recursive prediction error algorithm (11.44) of Ljung (1999)
is implemented. See also “Algorithms for Recursive Estimation”.

For the special cases of ARX/AR models, and of single-input
ARMAX/ARMA, Box-Jenkins, and output-error models, it is more
efficient to use rarx, rarmax, rbj, and roe.

See Also nkshift | rarmax | rarx | rbj | roe | rplr

1-780

rplr

Purpose Estimate general input-output models using recursive pseudolinear
regression method

Syntax thm = rplr(z,nn,adm,adg)
[thm,yhat,P,phi] = rplr(z,nn,adm,adg,th0,P0,phi0)

Description This is a direct alternative to rpem and has essentially the same syntax.
See rpem for an explanation of the input and output arguments.

rplr differs from rpem in that it uses another gradient approximation.
See Section 11.5 in Ljung (1999). Several of the special cases are
well-known algorithms.

When applied to ARMAX models, (nn = [na nb nc 0 0 nk]), rplr
gives the extended least squares (ELS) method. When applied to the
output-error structure (nn = [0 nb 0 0 nf nk]), the method is known
as HARF in the adm = 'ff' case and SHARF in the adm = 'ng' case.

rplr can also be applied to the time-series case in which an ARMA
model is estimated with

z = y
nn = [na nc]

You can thus use rplr as an alternative to rarmax for this case.

References For more information about HARF and SHARF, see Chapter 11 in
Ljung (1999).

See Also nkshift | rarmax | rarx | rbj | roe | rpem

1-781

rsample

Purpose Random sampling of linear identified systems

Syntax sys_array = rsample(sys,N)
sys_array = rsample(sys,N,sd)

Description sys_array = rsample(sys,N) creates N random samples of the
identified linear system, sys. sys_array contains systems with the
same structure as sys, whose parameters are perturbed about their
nominal values, based on the parameter covariance.

sys_array = rsample(sys,N,sd) specifies the standard deviation
level, sd, for perturbing the parameters of sys.

Tips • For systems with large parameter uncertainties, the randomized
systems may contain unstable elements. These unstable elements
may make it difficult to analyze the properties of the identified
system. Execution of analysis commands, such as step, bode, sim,
etc., on such systems can produce unreliable results. Instead, use a
dedicated Monte-Carlo analysis command, such as simsd.

Input
Arguments

sys

Identifiable system.

N

Number of samples to be generated.

Default: 10

sd

Standard deviation level for perturbing the identifiable parameters
of sys.

Default: 1

1-782

rsample

Output
Arguments

sys_array

Array of random samples of sys.

If sys is an array of models, then the size of sys_array is equal to
[size(sys) N]. There are N randomized samples for each model in sys.

The parameters of the samples in sys_array vary from the original
identifiable model within 1 standard deviation of their nominal values.

Examples Random Sample of an Estimated Model

Estimate a third-order, discrete-time, state-space model. Analyze the
uncertainty in its time (step) and frequency (Bode) responses.

Estimate the model.

load iddata2 z2;
sys = n4sid(z2,3);

Randomly sample the estimated model.

N = 20;

sys_array = rsample(sys,N);

Analyze the model uncertainty.

opt = bodeoptions; opt.PhaseMatching = 'on';
figure, bodeplot(sys_array,'g',sys,'r.',opt)
figure, stepplot(sys_array,'g',sys,'r.-')

Specify Standard Deviation Level for Parameter Perturbation

Estimate the model.

load iddata2 z2;
sys = n4sid(z2,3);

Randomly sample the estimated model. Specify the standard deviation
level for perturbing the model parameters.

1-783

rsample

N = 20;

sd = 2;

sys_array = rsample(sys,N,sd);

Analyze the model uncertainty.

figure;
bode(sys_array);

Compare Frequency Response Confidence Regions for
Sampled ARMAX Model

Estimate an ARMAX model. Compare the frequency response
confidence region corresponding to 2 standard deviations (asymptotic
estimate) to values obtained by random sampling for the same value of
standard deviation.

Estimate ARMAX model.

load iddata1 z1
sys = armax(z1,[2 2 2 1]);

Randomly sample the ARMAX model. Perturb the model parameters
up to 2 standard deviations.

N = 20;

sd = 2;

sys_array = rsample(sys,N,sd);

Compare the frequency response confidence region corresponding to 2
standard deviations with the model array response.

opt = bodeoptions; opt.PhaseMatching = 'on';
opt.ConfidenceRegionNumberSD = 2;
bodeplot(sys_array,'g',sys,'r',opt)

1-784

rsample

To view the confidence region, right click the plot, and choose
Characteristics > Confidence Region.

See Also simsd | init | noisecnv | noise2meas | iopzmap | bode |
step

1-785

saturation

Purpose Class representing saturation nonlinearity estimator for
Hammerstein-Wiener models

Syntax s=saturation(LinearInterval,L)

Description saturation is an object that stores the saturation nonlinearity
estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:

s=saturation(LinearInterval,L) creates a saturation nonlinearity
estimator object, initialized with the linear interval L.

Use evaluate(s,x) to compute the value of the function defined by the
saturation object s at x.

Tips Use saturation to define a nonlinear function y F x= () , where F is a
function of x and has the following characteristics:

a x b F x x
a x F x a
b x

≤ < =
> =
≤

()
()

 F x b() =

y and x are scalars.

saturation
Properties

You can specify the property value as an argument in the constructor
to specify the object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List LinearInterval property value
get(s)
s.LinearInterval

You can also use the set function to set the value of particular
properties. For example:

1-786

saturation

set(s, 'LinearInterval', [-1.5 1.5])

The first argument to set must be the name of a MATLAB variable.

Property Name Description

LinearInterval 1-by-2 row vector that specifies the initial interval of the
saturation.
Default=[NaN NaN].

For example:

saturation('LinearInterval',[-1.5 1.5])

Examples Use saturation to specify the saturation nonlinearity estimator in
Hammerstein-Wiener models. For example:

m=nlhw(Data,Orders,saturation([-1 1]),[]);

The saturation nonlinearity is initialized at the interval [-1 1]. The
interval values are adjusted to the estimation data by nlhw.

See Also nlhw

1-787

segment

Purpose Segment data and estimate models for each segment

Syntax segm = segment(z,nn)
[segm,V,thm,R2e] = segment(z,nn,R2,q,R1,M,th0,P0,ll,mu)

Description segment builds models of AR, ARX, or ARMAX/ARMA type,

A q y t B q u t nk C q e t() () () () () ()= − +

assuming that the model parameters are piecewise constant over time.
It results in a model that has split the data record into segments over
which the model remains constant. The function models signals and
systems that might undergo abrupt changes.

The input-output data is contained in z, which is either an iddata
object or a matrix z = [y u] where y and u are column vectors. If the
system has several inputs, u has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model

nn = [na nb nc nk]

where na, nb, and nc are the orders of the corresponding polynomials.
See “What Are Polynomial Models?”. Moreover, nk is the delay. If the
model has several inputs, nb and nk are row vectors, giving the orders
and delays for each input.

For an ARX model (nc = 0) enter

nn = [na nb nk]

For an ARMA model of a time series

z = y
nn = [na nc]

and for an AR model

nn = na

1-788

segment

The output argument segm is a matrix, where the kth row contains
the parameters corresponding to time k. This is analogous to the
output argument thm in rarx and rarmax. The output argument thm
of segment contains the corresponding model parameters that have
not yet been segmented. That is, they are not piecewise constant, and
therefore correspond to the outputs of the functions rarmax and rarx.
In fact, segment is an alternative to these two algorithms, and has a
better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction
errors of the segmented model. It is a measure of how successful the
segmentation has been.

The input argument R2 is the assumed variance of the innovations e(t)
in the model. The default value of R2, R2 = [], is that it is estimated.
Then the output argument R2e is a vector whose kth element contains
the estimate of R2 at time k.

The argument q is the probability that the model exhibits an abrupt
change at any given time. The default value is 0.01.

R1 is the assumed covariance matrix of the parameter jumps when they
occur. The default value is the identity matrix with dimension equal to
the number of estimated parameters.

M is the number of parallel models used in the algorithm (see below).
Its default value is 5.

th0 is the initial value of the parameters. Its default is zero. P0 is the
initial covariance matrix of the parameters. The default is 10 times
the identity matrix.

ll is the guaranteed life of each of the models. That is, any created
candidate model is not abolished until after at least ll time steps. The
default is ll = 1. Mu is a forgetting parameter that is used in the
scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more
robust to have a reasonable guess of R2 than to estimate it. Typically,
you need to try different values of R2 and evaluate the results. (See the

1-789

segment

example below.) sqrt(R2) corresponds to a change in the value y(t)
that is normal, giving no indication that the system or the input might
have changed.

Algorithms The algorithm is based on M parallel models, each recursively
estimated by an algorithm of Kalman filter type. Each model is
updated independently, and its posterior probability is computed.
The time-varying estimate thm is formed by weighting together the
M different models with weights equal to their posterior probability.
At each time step the model (among those that have lived at least ll
samples) that has the lowest posterior probability is abolished. A new
model is started, assuming that the system parameters have changed,
with probability q, a random jump from the most likely among the
models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest
posterior probability is tracked back and the time instances where it
jumped are marked. This defines the different segments of the data. (If
no models had been abolished in the algorithm, this would have been the
maximum likelihood estimates of the jump instances.) The segmented
model segm is then formed by smoothing the parameter estimate,
assuming that the jump instances are correct. In other words, the last
estimate over a segment is chosen to represent the whole segment.

Examples Check how the algorithm segments a sinusoid into segments of constant
levels. Then use a very simple model y(t) = b1 * 1, where 1 is a fake
input and b1 describes the piecewise constant level of the signal y(t)
(which is simulated as a sinusoid).

y = sin([1:50]/3)';
thm = segment([y,ones(length(y),1)],[0 1 1],0.1);
plot([thm,y])

By trying various values of R2 (0.1 in the above example), more levels
are created as R2 decreases.

1-790

selstruc

Purpose Select model order for single-output ARX models

Syntax nn = selstruc(v)
[nn,vmod] = selstruc(v,c)

Description
Note Use selstruc for single-output systems only. selstruc supports
both single-input and multiple-input systems.

selstruc is a function to help choose a model structure (order) from
the information contained in the matrix v obtained as the output from
arxstruc or ivstruc.

The default value of c is 'plot'. The plot shows the percentage of
the output variance that is not explained by the model as a function
of the number of parameters used. Each value shows the best fit for
that number of parameters. By clicking in the plot you can examine
which orders are of interest. When you click Select, the variable nn
is exported to the workspace as the optimal model structure for your
choice of number of parameters. Several choices can be made.

c = 'aic' gives no plots, but returns in nn the structure that minimizes

V V
d

N

V
d

N
N d

mod log

log() ,

= +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= +

1
2

2

where V is the loss function, d is the total number of parameters in the
structure in question, and N is the number of data points used for the

estimation.
log()V

d
N

+ 2

is the Akaike’s Information Criterion (AIC).
See aic for more details.

c = 'mdl' returns in nn the structure that minimizes Rissanen’s
Minimum Description Length (MDL) criterion.

1-791

selstruc

V V
d N

Nmod = +⎛
⎝⎜

⎞
⎠⎟

1
log()

When c equals a numerical value, the structure that minimizes

V V
cd
Nmod = +⎛

⎝⎜
⎞
⎠⎟

1

is selected.

The output argument vmod has the same format as v, but it contains the
logarithms of the accordingly modified criteria.

Examples load iddata5;
data = z5;
V = arxstruc(data(1:200),data(201:400),...

struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)

1-792

set

Purpose Set or modify model properties

Syntax set
set(sys,'Property',Value)
set(sys,'Property1',Value1,'Property2',Value2,...)
set(sys,'Property')
set(sys)

Description set is used to set or modify the properties of a dynamic system
model. Like its Handle Graphics® counterpart, set uses property
name/property value pairs to update property values.

set(sys,'Property',Value) assigns the value Value to the property
of the model sys specified by the string 'Property'. This string can be
the full property name (for example, 'UserData') or any unambiguous
case-insensitive abbreviation (for example, 'user'). The specified
property must be compatible with the model type. For example, if sys is
a transfer function, Variable is a valid property but StateName is not.
For a complete list of available system properties for any linear model
type, see the reference page for that model type.

set(sys,'Property1',Value1,'Property2',Value2,...) sets multiple
property values with a single statement. Each property name/property
value pair updates one particular property.

set(sys,'Property') displays admissible values for the property
specified by 'Property'.

set(sys) displays all assignable properties of sys and their admissible
values.

Examples Consider the SISO state-space model created by

sys = ss(1,2,3,4);

You can add an input delay of 0.1 second, label the input as torque,
reset the D matrix to zero, and store its DC gain in the 'Userdata'
property by

1-793

set

set(sys,'inputd',0.1,'inputn','torque','d',0,'user',dcgain(sys))

Note that set does not require any output argument. Check the result
with get by typing

get(sys)
a: 1
b: 2
c: 3
d: 0
e: []

StateName: {''}
InternalDelay: [0x1 double]

Ts: 0
InputDelay: 0.1

OutputDelay: 0
InputName: {'torque'}

OutputName: {''}
InputGroup: [1x1 struct]

OutputGroup: [1x1 struct]
Name: ''

Notes: {}
UserData: -2

Tips For discrete-time transfer functions, the convention used to represent
the numerator and denominator depends on the choice of variable (see
tf for details). Like tf, the syntax for set changes to remain consistent
with the choice of variable. For example, if the Variable property is set
to 'z' (the default),

set(h,'num',[1 2],'den',[1 3 4])

produces the transfer function

h z
z

z z
() = +

+ +
2

3 42

1-794

set

However, if you change the Variable to 'z^-1' by

set(h,'Variable','z^-1'),

the same command

set(h,'num',[1 2],'den',[1 3 4])

now interprets the row vectors [1 2] and [1 3 4] as the polynomials
1 + 2z−1 and 1 + 3z−1 + 4z−2 and produces:

h z
z

z z
zh z−

−

− −() = +
+ +

= ()1
1

1 2
1 2

1 3 4

Note Because the resulting transfer functions are different, make sure
to use the convention consistent with your choice of variable.

See Also get | frd | ss | tf | zpk | idfrd | idss | idtf | idgrey | idproc |
idpoly | idnlarx | idnlhw | idnlgrey

1-795

setcov

Purpose Set parameter covariance data in identified model

Syntax sys = setcov(sys0,cov)

Description sys = setcov(sys0,cov) modifies the parameter covariance of sys0
to the value specified by cov.

The model parameter covariance is calculated and stored automatically
when a model is estimated. Therefore, you do not need to set the
parameter covariance explicitly for estimated models. Use this function
for analysis, such as to study how the parameter covariance affects the
response of a model obtained by explicit construction.

Input
Arguments

sys0

Identified model.

cov

Parameter covariance matrix.

cov is one of the following:

• an np-by-np semi-positive definite symmetric matrix, where np is
equal to the number of parameters of sys0.

• a structure with the following fields that describe the parameter
covariance in a factored form:

- R— usually the Cholesky factor of inverse of covariance.

- T — transformation matrix.

- Free— logical vector of length np indicating if a parameter is free.
Here np is equal to the number of parameters of sys0.

cov(Free,Free) = T*inv(R'*R)*T'.

Output
Arguments

sys

Identified model.

1-796

setcov

The values of all the properties of sys are the same as those in sys0,
except for the parameter covariance values which are modified as
specified by cov.

Examples Raw Covariance

Set raw covariance data for an identified model.

Create a covariance matrix for the transfer function

sys
s s

0
4

2 12

.

For this example, set the covariance values for only the denominator
parameters.

sys0 = idtf(4,[1 2 1]);
np = nparams(sys0);
cov = zeros(np);
den_index = 2:3;
cov(den_index,den_index)=diag([0.04 0.001]);

sys0 contains np model parameters.

cov(den_index,den_index)=diag([0.04 0.001]) creates a
covariance matrix, cov, with nonzero entries for the denominator
parameters.

Set the covariance for sys0.

sys = setcov(sys0,cov);

See Also getcov | rsample | sim | setpvec

1-797

setinit

Purpose Set initial states of idnlgrey model object

Syntax setinit(model,property,values)

Input
Arguments

model
Name of the idnlgrey model object.

property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

values
Values of the specified property Property. values are an Nx-by-1
cell array of values, where Nx is the number of states.

Description setinit(model,property,values) sets the values of the property
field of the InitialStates model property. property can be 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

See Also getinit | getpar | idnlgrey | setpar

1-798

setoptions

Purpose Set plot options for response plot

Syntax setoptions(h, PlotOpts)
setoptions(h, 'Property1', 'value1', ...)
setoptions(h, PlotOpts, 'Property1', 'value1', ...)

Description setoptions(h, PlotOpts) sets preferences for response plot using the
plot handle. h is the plot handle, PlotOpts is a plot options handle
containing information about plot options.

There are two ways to create a plot options handle:

• Use getoptions, which accepts a plot handle and returns a plot
options handle.

p = getoptions(h)

• Create a default plot options handle using one of the following
commands:

- bodeoptions — Bode plots

- hsvoptions — Hankel singular values plots

- nicholsoptions — Nichols plots

- nyquistoptions — Nyquist plots

- pzoptions — Pole/zero plots

- sigmaoptions — Sigma plots

- timeoptions— Time plots (step, initial, impulse, etc.)

For example,

p = bodeoptions

returns a plot options handle for Bode plots.

setoptions(h, 'Property1', 'value1', ...) assigns values
to property pairs instead of using PlotOpts. To find out what

1-799

setoptions

properties and values are available for a particular plot, type help
<function>options. For example, for Bode plots type

help bodeoptions

For a list of the properties and values available for each plot type, see
“Properties and Values Reference”.

setoptions(h, PlotOpts, 'Property1', 'value1', ...) first
assigns plot properties as defined in @PlotOptions, and then overrides
any properties governed by the specified property/value pairs.

Examples To change frequency units, first create a Bode plot.

sys=tf(1,[1 1]);
h=bodeplot(sys) % Create a Bode plot with plot handle h.

1-800

setoptions

Now, change the frequency units from rad/s to Hz.

p=getoptions(h); % Create a plot options handle p.
p.FreqUnits = 'Hz'; % Modify frequency units.
setoptions(h,p); % Apply plot options to the Bode plot and

% render.

To change the frequency units using property/value pairs, use this code.

sys=tf(1,[1 1]);
h=bodeplot(sys);
setoptions(h,'FreqUnits','Hz');

The result is the same as the first example.

See Also getoptions

1-801

setpar

Purpose Set initial parameter values of idnlgrey model object

Syntax setpar(model,property,values)

Input
Arguments

model
Name of the idnlgrey model object.

property
Name of the Parameters model property field, such as 'Name',
'Unit', 'Value', 'Minimum', or 'Maximum'.

Default: 'Value'.

values
Values of the specified property Property. values are an Np-by-1
cell array of values, where Np is the number of parameters.

Description setpar(model,property,values) sets the model parameter values in
the property field of the Parameters model property. property can be
'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

See Also getinit | getpar | idnlgrey | setinit

1-802

setpname

Purpose Set mnemonic parameter names for linear black-box model structures

Note setpname will be removed in a future release. Use the
Structure.Info field of a linear model instead.

Syntax model = setpname(model)

Description model is an idmodel object of idarx, idpoly, idproc, or idss type.
The returned model has the 'PName' property set to a cell array of
strings that correspond to the symbols used in this manual to describe
the parameters.

For single-input idpoly models, the parameters are called
'a1', 'a2', ...,'fn'.

For multiple-input idpoly models, the b and f parameters have
the output/input channel number in parentheses, as in 'b1(1,2)',
'f3(1,2)', etc.

For idarx models, the parameter names are as in '-A(ky,ku)' for the
negative value of the ky-ku entry of the matrix in A(q) polynomial of the
multiple-output ARX equation, and similarly for the B parameters.

For idss models, the parameters are named for the matrix entries they
represent, such as 'A(4,5)', 'K(2,3)', etc.

For idproc models, the parameter names are as described in idproc.

This function is particularly useful when certain parameters are to
be fixed.

1-803

setPolyFormat

Purpose Specify format for B and F polynomials of multi-input polynomial model
for backward compatibility

Syntax model= setPolyFormat(model, 'cell')
model= setPolyFormat(model, 'double')

Description model= setPolyFormat(model, 'cell') converts the B and F
polynomials of a multi-input polynomial model, model, from double
matrices to cell arrays. Each cell array has Nu-elements of double
vectors, where Nu is the number of inputs.

model= setPolyFormat(model, 'double') allows you to continue
using double matrices for the B and F polynomials. The model displays
a message that it is in backward compatibility mode.

Tips • The B and F polynomials, represented by b and f properties of idpoly
object, are currently double matrices. For multi-input polynomial
models, these polynomials will be cell arrays in a future version.
Using setPolyFormat allows you to either change to using cell arrays
immediately or continue using double arrays without errors in a
future version.

• After using model = setPolyFormat(model, 'cell'), update your
code to use cell array syntax for operations on the b and f properties.

• After using model = setPolyFormat(model, 'double'), you can
continue using double matrix syntax for operations on the b and f
properties.

• setPolyFormat has no effect on single-input idpoly models, where
the b and f properties continue to be represented by double row
vectors.

Examples Convert the B and F polynomials of an estimated multi-input ARX
model to cell arrays:

1 Estimate a 3-input ARX model.

1-804

setPolyFormat

% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [1 1 1]]);

The software computes the B and F polynomials and stores their
values as double matrices in the b and f properties. Operations on
the B and F polynomials, such as m.b, produce an incompatibility
warning.

2 Convert the B and F polynomials to cell arrays.

m=setPolyFormat(m,'cell');

To verify that the B and F polynomials are cell arrays, type
class(m.b), which returns:

ans =

cell

3 Extract pole and zero information from the model using cell array
syntax.

Poles1 = roots(m.f{1});
Zeros1 = roots(m.b{1});

Continue using double matrices for B and F polynomials of an estimated
multi-input ARX model:

1 Estimate a 3-input ARX model.

% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [1 1 1]]);

1-805

setPolyFormat

The software computes the B and F polynomials, and stores their
values in double matrices in the b and f properties. Operations on
the B and F polynomials, such as m.b, produce an incompatibility
warning.

2 Designate the model to continue using double matrices for the B and
F polynomials for backward compatibility.

m=setPolyFormat(m,'double')

The following message at the MATLAB prompt indicates that the
model is backward compatible:

(model configured to operate in backward compatibility mode)

3 Extract pole and zero information from the model using matrix
syntax.

Poles1 = roots(m.f(1,:))
Zeros1 = roots(m.b(1,:))

See Also idpoly | get | set | polydata | tfdata

How To • “Extracting Numerical Model Data”

1-806

setpvec

Purpose Modify value of model parameters

Syntax sys = setpvec(sys0,par)
sys = setpvec(sys0,par,'free')

Description sys = setpvec(sys0,par) modifies the value of the parameters of the
identified model sys0 to the value specified by par.

par must be of length nparams(sys0). nparams(sys0) returns a count
of all the parameters of sys0.

sys = setpvec(sys0,par,'free') modifies the value of all the free
estimation parameters of sys0 to the value specified by par.

par must be of length nparams(sys0,'free'). nparams(sys0,'free')
returns a count of all the free parameters of sys0.

Input
Arguments

sys0

Identified model containing the parameters whose value is modified
to par.

par

Replacement value for the parameters of the identified model sys0.

For the syntax sys = setpvec(sys0,par), par must be of length
nparams(sys0). nparams(sys0) returns a count of all the parameters
of sys0.

For the syntax sys = setpvec(sys0,par,'free'), par must be of
length nparams(sys0,'free'). nparams(sys0,'free') returns a
count of all the free parameters of sys0.

Use NaN to denote unknown parameter values.

If sys0 is an array of models, then specify par as a cell array with an
entry corresponding to each model in sys0.

1-807

setpvec

Output
Arguments

sys

Identified model obtained from sys0 by updating the values of the
specified parameters.

Examples Modify the parameter values of a transfer function model.

The goal here is to ultimately use the transfer function model to
initialize a model estimation.

sys0 = idtf(1,[1 2]);
par = [1; NaN; 0];
sys = setpvec(sys0,par);

Modify the value of the free parameters of a transfer function model.

sys0 = idtf([1 0],[1 2 0]);
sys0.Structure.den.Free(3) = false
par = [1; 2; 1]
sys = setpvec(sys0,par,'free');

See Also getpvec | setcov | nparams

1-808

setstruc

Purpose Set matrix structure for idss model objects

Note setstruc will be removed in a future release. Use setpvec and
the Structure property of idss objects instead.

Syntax setstruc(M,As,Bs,Cs,Ds.Ks,X0s)
setstruc(M,Mods)

Description setstruc(M,As,Bs,Cs,Ds.Ks,X0s)

is the same as

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'X0s',X0s)

Use empty matrices for structure matrices that should not be changed.
You can omit trailing arguments.

In the alternative syntax, Mods is a structure with field names As, Bs,
etc., with the corresponding values of the fields.

See Also idss

1-809

sgrid

Purpose Generate s-plane grid of constant damping factors and natural
frequencies

Syntax sgrid
sgrid(z,wn)

Description sgrid generates, for pole-zero and root locus plots, a grid of constant
damping factors from zero to one in steps of 0.1 and natural frequencies
from zero to 10 rad/sec in steps of one rad/sec, and plots the grid over
the current axis. If the current axis contains a continuous s-plane root
locus diagram or pole-zero map, sgrid draws the grid over the plot.

sgrid(z,wn) plots a grid of constant damping factor and natural
frequency lines for the damping factors and natural frequencies in the
vectors z and wn, respectively. If the current axis contains a continuous
s-plane root locus diagram or pole-zero map, sgrid(z,wn) draws the
grid over the plot.

Alternatively, you can select Grid from the right-click menu to generate
the same s-plane grid.

Examples Plot s-plane grid lines on the root locus for the following system.

H s
s s

s s
() = + +

+ +
2 5 1

2 3

2

2

You can do this by typing

H = tf([2 5 1],[1 2 3])
Transfer function:
2 s^2 + 5 s + 1

s^2 + 2 s + 3

rlocus(H)
sgrid

1-810

sgrid

See Also pzmap | rlocus | zgrid

1-811

showConfidence

Purpose Display confidence regions on response plots for identified models

Syntax showConfidence(plot_handle)
showConfidence(plot_handle,sd)

Description showConfidence(plot_handle) displays the confidence region on the
response plot, with handle plot_handle, for an identified model.

showConfidence(plot_handle,sd) displays the confidence region for
sd standard deviations.

Input
Arguments

plot_handle

Response plot handle.

plot_handle is the handle for the response plot of an identified
model on which the confidence region is displayed. It is obtained as an
output of one of the following plot commands: bodeplot, stepplot,
impulseplot, nyquistplot, or iopzplot.

sd

Standard deviation of the confidence region. A common choice is 3
standard deviations, which gives 99.7% significance.

Default:
getoptions(plot_handle,'ConfidenceRegionNumberSD')

Examples View Confidence Region for Identified Model

Show the confidence bounds on the bode plot of an identified ARX model.

Obtain identified model and plot its bode response.

load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);

z1 is an iddata object that contains time domain system response data.

1-812

showConfidence

sys is an idpoly model containing the identified polynomial model.

h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys.

showConfidence(h);

This plot depicts the confidence region for 1 standard deviation.

Specify the Standard Deviation of the Confidence Region

Show the confidence bounds on the bode plot of an identified ARX model.

Obtain identified model and plot its bode response.

load iddata1 z1
sys = arx(z1, [2 2 1]);
h = bodeplot(sys);

1-813

showConfidence

z1 is an iddata object that contains time domain system response data.

sys is an idpoly model containing the identified polynomial model.

h is the plot handle for the bode response plot of sys.

Show the confidence bounds for sys using 2 standard deviations.

sd = 2;
showConfidence(h,sd);

sd specifies the number of standard deviations for the confidence region
displayed on the plot.

Alternatives You can interactively turn on the confidence region display
on a response plot. Right-click the response plot, and select
Characteristics > Confidence Region.

See Also bodeplot | stepplot | impulseplot | nyquistplot | iopzplot

1-814

sigmoidnet

Purpose Class representing sigmoid network nonlinearity estimator for
nonlinear ARX and Hammerstein-Wiener models

Syntax s=sigmoidnet('NumberOfUnits',N)
s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)

Description sigmoidnet is an object that stores the sigmoid network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=sigmoidnet('NumberOfUnits',N) creates a sigmoid nonlinearity
estimator object with N terms in the sigmoid expansion.

s=sigmoidnet(Property1,Value1,...PropertyN,ValueN) creates
a sigmoid nonlinearity estimator object specified by properties in
“sigmoidnet Properties” on page 1-816.

Use evaluate(s,x) to compute the value of the function defined by the
sigmoidnet object s at x.

Tips Use sigmoidnet to define a nonlinear function y F x= () , where y is
scalar and x is an m-dimensional row vector. The sigmoid network
function is based on the following expansion:

F x x r PL a f x r Qb c() ()= − + −() +() +
+

1 1 1

 aa f x r Qb c dn n n−() +() +
where f is the sigmoid function, given by the following equation:

f z
e z

() .=
+−

1

1

P and Q are m-by-p and m-by-q projection matrices. The projection
matrices P and Q are determined by principal component analysis of
estimation data. Usually, p=m. If the components of x in the estimation
data are linearly dependent, then p<m. The number of columns of Q,

1-815

sigmoidnet

q, corresponds to the number of components of x used in the sigmoid
function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in a
Hammerstein-Wiener model, m=q=1 and Q is a scalar.

r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

d, a, and c are scalars.

L is a p-by-1 vector.

b are q-by-1 vectors.

sigmoidnet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(s)
% Get value of NumberOfUnits property
s.NumberOfUnits

You can also use the set function to set the value of particular
properties. For example:

set(s, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.

1-816

sigmoidnet

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default=10.

For example:

sigmoidnet(H,'NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'—Estimates the vector L in the expansion.

• 'off'—Fixes the vector L to zero.

For example:

sigmoidnet(H,'LinearTerm','on')

Parameters A structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• Dilation: q-by-n matrix containing the values bn.

• Translation: 1-by-n vector containing the values cn.

• OutputCoef: n-by-1 vector containing the values an.

• OutputOffset: scalar d.

Typically, the values of this structure are set by estimating a
model with a sigmoidnet nonlinearity.

1-817

sigmoidnet

Algorithms sigmoidnet uses an iterative search technique for estimating
parameters.

Examples Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX
and Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,sigmoidnet('num',5));

See Also nlarx | nlhw

1-818

sim

Purpose Simulate response of identified models to arbitrary inputs

Syntax y = sim(sys,data)
y = sim(sys,data,opt)
[y,y_sd] = sim(sys,data, ___)
[y,y_sd,x] = sim(sys,data, ___)

Description y = sim(sys,data) simulates the response an identified model, sys,
using the input data, data. y is the simulation output.

y = sim(sys,data,opt) simulates the system response using the
option set, opt, to specify simulation behavior.

[y,y_sd] = sim(sys,data, ___) also returns the estimated standard
deviation, y_sd, for sys.

[y,y_sd,x] = sim(sys,data, ___) also returns the state trajectory,
x, for state-space models.

• sim extends lsim to facilitate additional features relevant to
identified models:

- Simulation of nonlinear models

- Simulation with additive noise

- Incorporation of signal offsets

- Computation of response standard deviation (linear models only)

- Frequency-domain simulation (linear models only)

- Simulations using different intersample behavior for different
inputs

To obtain the simulated response without any of the preceding
operations, use lsim.

Tips • You can specify initial conditions for simulation by creating an option
set using simOptions and then setting the InitialCondition option
appropriately.

1-819

sim

For multi-experiment data, you can configure each experiment’s
initial conditions individually.

• You can simulate the initial condition response of time-series
models (models with no inputs) using sim. To do so, specify data
as an Ns-by-0 signal, where Ns is the number of samples. As with
input-output models, you can study the effect of noise on the response
by using the AddNoise and NoiseData simulation options. For more
information regarding these simulation options, see simOptions.

For example:

load iddata9 z9;
sys = ar(z9,4,'ls');
data = iddata([],zeros(512,0),z9.Ts);
opt = simOptions('AddNoise',true);
y = sim(sys,data,opt);

• You can specify the addition of a custom noise signal to the simulated
response. To do so, create an option set using simOptions and then
set the NoiseData option appropriately.

Input
Arguments

sys

Identified model.

sys may be a linear or nonlinear identified model.

data

Simulation input data.

Specify data as an iddata object, using only the input channels.

If sys is a linear model, you can use either time- or frequency-domain
data. If sys is a nonlinear model, you can use only time-domain data.

For time-domain simulation of discrete-time systems, data may also be
specified as a matrix whose columns correspond to each input channel.

If you do not have data from an experiment, use idinput to generate
signals of various characteristics.

1-820

sim

opt

Simulation options.

opt is an option set, created using simOptions, that specifies options
including:

• Signal offsets

• Initial condition handling

• Additive noise

Output
Arguments

y

Simulated response.

y is an iddata model representing the simulated response for sys using
data as the simulation input.

If data represents time-domain data, then y is the simulated response
for the time vector corresponding to data.

If data represents frequency-domain data, then y contains the Fourier
transform of the corresponding sampled time-domain output signal.
This signal is obtained by the multiplying the frequency response of
sys, G(w) and U(w).

For multi-experiment data, y is a corresponding multi-experiment
iddata object.

y_sd

Estimated standard deviation of the simulated response for linear
models.

y_sd is derived using first order sensitivity considerations (Gauss
approximation formula).

For nonlinear models, y_sd is [].

x

Estimated state trajectory for state-space models.

1-821

sim

Relevant only if sys is a state-space model (idss, idgrey or idnlgrey).

x is an Ns-by-Nx matrix, where Ns is the number of samples and Nx is
the number of states.

Examples Simulate Model Response

Simulate the response of an identified model.

Obtain the identified model.

load iddata2 z2;
sys = tfest(z2,3);

sys is an idtfmodel that encapsulates the third-order transfer function
estimated for the measured data z2.

Simulate the model.

sim(sys,z2);

1-822

sim

Specify Simulation Option

Simulate the model response of an identified model. Specify simulation
options to study the contribution of noise to the simulated model
response.

Obtain the identified model.

load iddata2 z2;
sys = tfest(z2,3);

sys is an idtfmodel that encapsulates the third-order transfer function
estimated for the measured data z2.

1-823

sim

Create a simulation option set that adds noise to the simulated model
response.

e = randn(length(z2.u),1);
opt = simOptions('AddNoise',true,'NoiseData',e);

e represents white, Gaussian noise.

opt is an option set that specifies the addition of noise data, e, to the
simulated model response. You specify the noise data vector, e, that is
added to the simulated model response by using the option NoiseData.

Obtain the simulated model response.

sim(sys,z2,opt);

1-824

sim

Alternatives • Use simsd for a Monte-Carlo method of computing the standard
deviation of the response.

See Also simOptions | simsd | lsim | step | compare | predict |
forecast | idinput

1-825

sim(idnlarx)

Purpose Simulate nonlinear ARX model

Syntax YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)

Description YS = sim(MODEL,U) simulates a dynamic system with an idnlarx
model.

YS = sim(MODEL,U,'Noise') produces a noise corrupted simulation
with an additive Gaussian noise scaled according to the value of the
NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies the initial
conditions for simulation using various options, such as numerical
initial state vector or past I/O data.

To simulate the model with user-defined noise, set the input U = [UIN
E], where UIN is the input signal and E is the noise signal. UIN and E
must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

Input
Arguments

• MODEL: idnlarx model object.

• U: Input data for simulation, an iddata object (where only the input
channels are used) or a matrix. For simulations with noisy data, U
contains both input and noise channels.

• INIT: Initial condition specification. INIT can be one of the following:

- A real column vector X0, for the state vector corresponding to
an appropriate number of output and input data samples prior
to the simulation start time. To build an initial state vector
from a given set of input-output data or to generate equilibrium
states, see data2state(idnlarx), findstates(idnlarx) and

1-826

sim(idnlarx)

findop(idnlarx). For multi-experiment data, X0 may be a
matrix whose columns give different initial states for different
experiments.

- 'z': (Default) Zero initial state, equivalent to a zero vector of
appropriate size.

- iddata object containing output and input data samples
prior to the simulation start time. If it contains more
data samples than necessary, only the last samples
are taken into account. This syntax is equivalent to
sim(MODEL,U,'InitialState',data2state(MODEL,INIT)),
where data2state(idnlarx) transforms the iddata object INIT
to a state vector.

Output
Arguments

• YS: Simulated output. An iddata object if U is an iddata object,
a matrix otherwise.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples Simulation of a SISO idnlarx model

In this example you simulate a single-input single-output idnlarx
model M around a known equilibrium point, with an input level of 1
and output level of 10.

1 Load the sample data.

load iddata2;

2 Estimate an idnlarx model from the data.

M = nlarx(z2, [2 2 1], 'tree');

3 Estimate current states of model based on past data.

1-827

sim(idnlarx)

x0 = data2state(M, struct('Input',1, 'Output', 10));

4 Simulate the model using the initial states returned by data2state.

sim(M, z2, 'init', x0);

Continuing from End of Previous Simulation

In this example you continue the simulation of a model from the end of
a previous simulation run.

1 Estimate the idnlarx model from data.

load iddata2
M = nlarx(z2, [2 2 1], 'tree'); % idnlarx model

2 Simulate the model using first half of input data of z2

u1 = z2(1:200,[]);
% Simulate starting from zero initial states
ys1 = sim(M, u1, 'init', 'z');

3 Start another simulation, using the same states of the model from
when the first simulation ended. For the second simulation, you use
the second half of the input data of z2.

u2 = z2(201:end, []);

4 In order to set the initial states for second simulation correctly,
package input u1 and output ys1 from the first simulation into one
iddata object.

firstSimData = [ys1,u1];

5 Pass this data as initial conditions for the next simulation.

ys2 = sim(M, u2, 'init', firstSimData);

6 Verify the two simulations by comparing to a complete simulation
using all the input data of z2.

1-828

sim(idnlarx)

uTotal = z2(:,[]); % extract the whole input data
ysTotal = sim(M, uTotal, 'init', 'z');

% Compare the values of ys1, ys2 and ysTotal.
% ys1 should be equal to first half of ysTotal.
% ys2 should be equal to the second half of ysTotal
%
% plot the three responses
plot(ys1,'b', ys2, 'g', ysTotal, 'k*')

MATLAB software responds with a plot showing the three responses,
with ysTotal overlaying ys1 and ys2 to verify that they match.

Matching Model Response to Output Data

In this example, you estimate initial states of model M such that the
response best matches the output in data set z2.

1 Load the sample data and create data object z2.

load iddata2;
z2 = z2(1:50);

2 Estimate idnlarx model from data.

1-829

sim(idnlarx)

M = nlarx(z2,[4 3 2],'wave');

3 Estimate initial states of M to best fit z2.y in the simulated response.

x0 = findstates(M,z2,[],'sim');

4 Simulate the model.

ysim = sim(M, z2.u, 'init', x0)

5 Compare ysim with the output signal in z2:

time = z2.SamplingInstants;
plot(time, ysim, time, z2.y,'.')

Simulation Near Steady State with Known Input and
Unknown Output

In this example you start simulation of a model near steady state,
where the input is known to be 1, but the output is unknown.

• Load sample data and create data object z2.

load iddata2
z2 = z2(1:50);

• Estimate idnlarx model from data.

M = nlarx(z2, [4 3 2], 'wave');

• Determine equilibrium state values for input 1 and the unknown
target output.

x0 = findop(M, 'steady', 1, NaN);

• Simulate the model using initial states x0.

sim(M, z2.u, 'init', x0)

1-830

sim(idnlarx)

See Also predict | findop(idnlarx) | data2state(idnlarx) |
findstates(idnlarx)

1-831

sim(idnlgrey)

Purpose Simulate nonlinear ODE model

Syntax YS = sim(NLSYS,DATA)
YS = sim(NLSYS,DATA,'Noise');
YS = sim(NLSYS,DATA,X0INIT);
YS = sim(NLSYS,DATA,'Noise',XOINIT);
YS = sim(NLSYS,DATA,'Noise','InitialState',X0INIT);
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',

X0INIT);

Description YS = sim(NLSYS,DATA) simulates the output of an idnlgrey model.

YS = sim(NLSYS,DATA,'Noise'); simulates the model with Gaussian
noise added to YS.

YS = sim(NLSYS,DATA,X0INIT); simulates the model with the
specified initial states.

YS = sim(NLSYS,DATA,'Noise',XOINIT); simulates the model with
the specified initial states and with Gaussian noise added.

YS = sim(NLSYS,DATA,'Noise','InitialState',X0INIT);
simulates the model with the specified initial states.

[YS, YSD, XFINAL] =
sim(NLSYS,DATA,'Noise','InitialState',X0INIT); performs
simulation starting with the specified initial states and with
Gaussian noise added, and returns the final states of the model
after the simulation is completed.

To simulate the model with user-defined noise, set the input DATA =
[UIN E], where UIN is the input signal and E is the noise signal. UIN
and E must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

1-832

sim(idnlgrey)

Input
Arguments • NLSYS: idnlgrey model object.

• DATA: Input-noise data [U E]. If E is omitted and 'Noise' is not given
as an input argument, then a noise-free simulation is obtained. If E is
omitted and 'Noise' is given as an input argument, then Gaussian
noise created by randn(size(YS))*sqrtm(NLSYS.NoiseVariance)
will be added to YS. If both E and 'Noise' are given, then E specifies
the noise to add to YS. For time-continuous idnlgrey objects, DATA
passed as a matrix will lead to that the data sample interval, Ts, is
set to one.

• X0INIT: Initial states. Can have the following values:

- 'zero' : Zero initial state x(0) with all states fixed
(nlsys.InitialStates.Fixed is thus ignored).

- 'fixed' (default): Struct array (NLSYS.InitialState) determines
the values of the model initial states and all states are fixed.
(NLSYS.InitialStates.Fixed is ignored). Same as 'model'.

- vector/matrix: Column vector of initial state values. For multiple
experiment DATA, X0INIT may be a matrix whose columns give
different initial states for each experiment. All initial states are
kept fixed (nlsys.InitialStates.Fixed is thus ignored).

- struct array : Nx-by-1 structure array with fields:

• Name: Name of the state (a string).

• Unit: Unit of the state (a string).

• Value: Value of the states (a finite real 1-by-Ne vector, where Ne
is the number of experiments.)

• Minimum: Minimum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
minimum value).

• Maximum: Maximum values of the states (a real 1-by-Ne vector
or a real scalar, in which case all initial states have the same
maximum value).

1-833

sim(idnlgrey)

• Fixed: True (or a 1-by-Ne vector of True values). Any false
value is ignored.

Output
Arguments

• YS: Simulated output. If DATA is an iddata object, then YS will
also be an iddata object. Otherwise, YS will be a matrix where
the k:th output is found in the k:th column of YS. If DATA is a
multiple-experiment iddata object, then YS will be a multiple
experiment object as well.

• YSD: Empty vector ([].) In the future, it will contain the estimated
standard deviation of the simulated output.

• XFINAL: Final states computed. In the single experiment case it is a
column vector of length Nx. For multi-experiment data, XFINAL is an
Nx-by-Ne matrix with the ith column specifying the initial state of
experiment i.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples In this example you simulate an idnlgrey model for a data set z. This
example uses the nlgr model created in idnlgreydemo2.

1 Load the data set and create an idnlgrey model.

load twotankdata;

2 Estimate the idnlgrey model.

% Specify file.
FileName = 'twotanks_c';
% Specify model orders [ny nu nx].
Order = [1 1 2];
% Specify initial parameters.
Parameters = {0.5; 0.0035; 0.019; ...

9.81; 0.25; 0.016};

1-834

sim(idnlgrey)

% Specify initial states.
InitialStates = [0; 0.1];
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, ...

InitialStates, Ts, ...
'Name', 'Two tanks');

3 Create an iddata object z from data z (from twotankdata.mat).

z = iddata([], u, 0.2, 'Name', 'Two tanks');

4 Simulate the model using the input signal from the data z.

sim(nlgr,z)

See Also findstates(idnlgrey) | pe | pem | predict

1-835

sim(idnlhw)

Purpose Simulate Hammerstein-Wiener model

Syntax YS = sim(MODEL,U)
YS = sim(MODEL,U,'Noise')
YS = sim(MODEL,U,'InitialState',INIT)

Description YS = sim(MODEL,U) simulates the output of an idnlhw model.

YS = sim(MODEL,U,'Noise') simulates the model output with
an additive Gaussian noise scaled according to the value of the
NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies initial conditions
for starting the simulation.

To simulate the model with user-defined noise, set the input U = [UIN
E], where UIN is the input signal and E is the noise signal. UIN and E
must both be one of the following:

• iddata objects: E stores the noise signals as inputs, where the
number of inputs matches the number of model outputs.

• Matrices: E has as many columns as there are noise signals,
corresponding to the number of model outputs.

Input
Arguments

• MODEL: idnlhw model object.

• U: Input data for simulation, which is an iddata object (where only
the input channels are used) or a matrix. For simulations with noisy
data, U contains both input and noise channels.

• INIT: Initial condition for simulation. INIT has one of the following
values:

- Vector of initial state values. To estimate an initial state vector
from input-output data or to generate equilibrium states, see the
findstates(idnlhw) and findop(idnlhw) reference pages. For
multiple-experiment data, enter a matrix with the same number
of columns as the number of experiments.

1-836

sim(idnlhw)

- 'z': (Default) Vector containing zeros and corresponding to a
system starting from rest.

Output
Arguments

• YS: Simulated output, which is an iddata object when U is an iddata
object, or a matrix otherwise.

Note If sim is called without an output argument, MATLAB software
displays the simulated output(s) in a plot window.

Examples Simulation Using Initial States to Best Fit Model Response to
Measured Output

In this example you simulate the model output using initial states that
minimize the error between the simulated and the measured output.
z2 is the measured data.

1 Load the sample data.

load iddata2

2 Create a Hammerstein-Wiener model.

M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute the initial states that best fit the model response to the
measured output.

x0 = findstates(M,z2);

4 Simulate the model using the estimated initial states.

ysim = sim(M,z2.u,'init',x0)

5 Compare ysim to output signal in z2:

t = z2.samp;

1-837

sim(idnlhw)

plot(t, ysim, t, z2.y)

Simulating a Hammerstein-Wiener Model at Steady-State
with Known Input and Unknown Output

In this example, you simulate a single-input single-output idnlhw
model about a steady-state operating point, where the input level is
known to be 1 and the output level is unknown.

1 Load the sample data.

load iddata2

2 Create a Hammerstein-Wiener model.

M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute steady-state operating point values corresponding to an
input level of 1 and an unknown output level.

x0 = findop(M,'steady',1,NaN);

4 Simulate the model using the estimated initial states.

sim(M,z2.u,'init',x0)

See Also findop(idnlhw) | findstates(idnlhw) | predict

1-838

simOptions

Purpose Option set for sim

Syntax opt = simOptions
opt = simOptions(Name,Value)

Description opt = simOptions creates the default options set for sim.

opt = simOptions(Name,Value) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify initial conditions.

InitialCondition takes one of the following:

• 'z' — Zero initial conditions.

• x0 — Numerical column vector denoting initial states. For
multi-experiment data, use a matrix with Ne columns, where Ne is
the number of experiments. Use this option for state-space models
(idss and idgrey) only.

• io — Structure with the following fields:

- Input

- Output

Use the Input and Output fields to specify the history for a time
interval that starts before the start time of the data used by
compare. In case the data used by compare is a time-series model,
specify Input as []. Use a row vector to denote a constant signal

1-839

simOptions

value. The number of columns in Input and Output must always
equal the number of input and output channels, respectively. For
multi-experiment data, specify io as a struct array of Ne elements,
where Ne is the number of experiments.

Default: []

’InputOffset’

Input signal offset.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data before the input is used to simulate the model.

Default: []

’OutputOffset’

Output signal offset.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multi-experiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is added to the corresponding
simulated response of the model.

Default: []

1-840

simOptions

’AddNoise’

Specify whether noise should be added to the response model or not.

Default: false

’NoiseData’

Noise signal data.

Specify the noise signal, e, for the model

y t Gu t He t() () ()

Where G is the transfer function from the input, u(t), to the output, y(t).

NoiseData is used for simulation only when AddNoise is true.

NoiseData takes one of the following:

• Matrix — Ns-by-Ny matrix, where Ns is the number of input data
samples, and Ny is the number of outputs. Each entry of this matrix
is added to the corresponding output data point. Before addition,
the noise is scaled according to the NoiseVariance property of the
identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise
with zero mean and unit covariance.

• Cell array — For multiexperiment data, specify NoiseData as a cell
array of Ne matrices. Ne is the number of experiments.

• []— Gaussian noise is automatically specified as NoiseData.

Default: []

Output
Arguments

opt

Option set containing the specified options for sim.

1-841

simOptions

Examples Create Default Options Set for Model Simulation

opt = simOptions;

Specify Options for Model Simulation

Create an options set for sim using zero initial conditions, and set the
input offset to 5.

opt = simOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = simOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also sim

1-842

simsd

Purpose Simulate linear models with uncertainty using Monte Carlo method

Syntax simsd(sys,data)
simsd(sys,data,N)
simsd(sys,data,N,opt)
y = simsd(sys,data,N,opt)
[y,y_sd] = simsd(sys,data,N,opt)

Description simsd(sys,data) simulates and plots the response of 10 perturbed
realizations of the identified model, sys. Simulation input data, data,
is used to compute the simulated response.

The parameters of the perturbed realizations are consistent with the
parameter covariance of the original model, sys.

simsd(sys,data,N) simulates and plots the response of N perturbed
realizations of the identified model, sys.

simsd(sys,data,N,opt) simulates the system response using the
option set, opt, to specify simulation behavior.

y = simsd(sys,data,N,opt) returns the simulation result as a cell
array, y. No simulated response plot is produced.

[y,y_sd] = simsd(sys,data,N,opt) also returns the estimated
standard deviation, y_sd, for the simulated response.

The parameter changes in the randomly selected models are scaled to
be small (ca 0.1%) compared to the parameter values. The response
changes are then scaled up to correspond to one standard deviation.
The scaling does not apply to free delays of idproc or idtf models.

Tips • You can specify initial conditions for simulation by creating an option
set using simsdOptions and then setting the InitialCondition
option appropriately.

• simsd yields meaningful results only when sys contains information
regarding parameter uncertainty. Use getcov to examine the
parameter uncertainty for sys. For models with no parameter
uncertainty data, the results of simsd match that of sim.

1-843

simsd

Input
Arguments

sys

Identified linear model.

data

Simulation input data.

Specify data as a time- or frequency-domain iddata object, with input
channels only.

For time-domain simulation of discrete-time systems, data may also be
specified as a matrix whose columns correspond to each input channel.

N

Number of perturbed realizations for simulation.

Specify N as a positive integer.

Default: 10

opt

Simulation options.

opt is an option set, created using simsdOptions, that specifies options
including:

• Signal offsets

• Initial condition handling

• Additive noise

Output
Arguments

y

Simulated response.

y is a cell array of N+1 elements, where N is the number of perturbed
realizations. y{1} contains the nominal response for sys. The
remaining elements contain the simulated response for the N perturbed
realizations.

1-844

simsd

y_sd

Estimated standard deviation of the simulated response.

y_sd is derived by averaging the simulations results in y.

Examples Simulate Estimated Model Using Monte-Carlo Method

Simulate an estimated model using the Monte-Carlo method for a
specified number of model perturbations.

Obtain an identified model.

load iddata3
sys = ssest(z3,2)

sys is an idss model that encapsulates the estimated second-order,
state-space model for the measured data, z3.

Simulate the estimated model using the Monte-Carlo method. Specify
the number of random model perturbations.

N = 20;
simsd(sys,z3,N)

1-845

simsd

See Also simsdOptions | getcov | sim | rsample | showConfidence

1-846

simsdOptions

Purpose Option set for simsd

Syntax opt = simsdOptions
opt = simsdOptions(Name,Value)

Description opt = simsdOptions creates the default options set for simsd.

opt = simsdOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialCondition’

Specify initial conditions.

InitialCondition takes one of the following:

• 'z' — Zero initial conditions.

• x0 — Numerical column vector denoting initial states. For
multi-experiment data, use a matrix with Ne columns, where Ne is
the number of experiments. Use this option for state-space models
(idss and idgrey) only.

• io — Structure with the following fields:

- Input

- Output

Use the Input and Output fields to specify the history for a time
interval that starts before the start time of the data used by
compare. In case the data used by compare is a time-series model,
specify Input as []. Use a row vector to denote a constant signal

1-847

simsdOptions

value. The number of columns in Input and Output must always
equal the number of input and output channels, respectively. For
multi-experiment data, specify io as a struct array of Ne elements,
where Ne is the number of experiments.

’InputOffset’

Input signal offset.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data before the input is used to simulate the model.

Default: []

’OutputOffset’

Output signal offset.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multi-experiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is added to the simulated
response of the model.

Default: []

’AddNoise’

1-848

simsdOptions

Specify whether noise should be added to the response model or not.

Default: false

’NoiseData’

Noise signal data.

Specify the noise signal, e, for the model

y t Gu t He t() () ()

Where G is the transfer function from the input, u(t), to the output, y(t).

NoiseData is used for simulation only when AddNoise is true.

NoiseData takes one of the following:

• Matrix — Ns-by-Ny matrix, where Ns is the number of input data
samples, and Ny is the number of outputs. Each entry of this matrix
is added to the corresponding output data point. Before addition,
the noise is scaled according to the NoiseVariance property of the
identified model used in simsd.

To obtain the right noise level, specify NoiseData as white noise
with zero mean and unit covariance.

• Cell array — For multiexperiment data, specify NoiseData as a cell
array of Ne matrices. Ne is the number of experiments.

• []— Gaussian noise is automatically specified as NoiseData.

Default: []

Output
Arguments

opt

Option set containing the specified options for simsd.

Examples Create Default Options Set for Model Simulation

opt = simsdOptions;

1-849

simsdOptions

Specify Options for Model Simulation

Create an options set for simsd using zero initial conditions, and set
the input offset to 5.

opt = simsdOptions('InitialCondition','z','InputOffset',5);

Alternatively, use dot notation to set the values of opt.

opt = simsdOptions;
opt.InitialCondition = 'z';
opt.InputOffset = 5;

See Also simsd

1-850

size

Purpose Query output/input/array dimensions of input–output model and
number of frequencies of FRD model

Syntax size(sys)
d = size(sys)
Ny = size(sys,1)
Nu = size(sys,2)
Sk = size(sys,2+k)
Nf = size(sys,'frequency')

Description When invoked without output arguments, size(sys) returns a
description of type and the input-output dimensions of sys. If sys is a
model array, the array size is also described. For identified models,
the number of free parameters is also displayed. The lengths of the
array dimensions are also included in the response to size when sys is
a model array.

d = size(sys) returns:

• The row vector d = [Ny Nu] for a single dynamic model sys with
Ny outputs and Nu inputs

• The row vector d = [Ny Nu S1 S2 ... Sp] for an
S1-by-S2-by-...-by-Sp array of dynamic models with Ny outputs and Nu
inputs

Ny = size(sys,1) returns the number of outputs of sys.

Nu = size(sys,2) returns the number of inputs of sys.

Sk = size(sys,2+k) returns the length of the k-th array dimension
when sys is a model array.

Nf = size(sys,'frequency') returns the number of frequencies
when sys is a frequency response data model. This is the same as the
length of sys.frequency.

Examples Example 1

Consider the model array of random state-space models

1-851

size

sys = rss(5,3,2,3);

Its dimensions are obtained by typing

size(sys)
3x1 array of state-space models
Each model has 3 outputs, 2 inputs, and 5 states.

Example 2

Consider the process model:

sys = idproc({'p1d', 'p2'; 'p3uz', 'p0'});

It’s input-output dimensions and number of free parameters are
obtained by typing:

size(sys)

Process model with 2 outputs, 2 inputs and 12 free parameters.

See Also isempty | issiso | ndims | nparams

1-852

spa

Purpose Estimate frequency response with fixed frequency resolution using
spectral analysis

Syntax G = spa(data)
G = spa(data,winSize,freq)
G = spa(data,winSize,freq,MaxSize)

Description G = spa(data) estimates frequency response (with uncertainty) and
noise spectrum from time- or frequency-domain data. data is an iddata
or idfrd object and can be complex valued. G is as an idfrd object. For
time-series data, G is the estimated spectrum and standard deviation.

G = spa(data,winSize,freq) estimates frequency response at
frequencies freq. freq is a row vector of values in rad/sec. winSize is a
scalar integer that sets the size of the Hann window.

G = spa(data,winSize,freq,MaxSize) can improve computational
performance using MaxSize to split the input-output data such that
each segment contains fewer than MaxSize elements. MaxSize is a
positive integer.

Definitions Frequency Response Function

Frequency response function describes the steady-state response of a
system to sinusoidal inputs. For a linear system, a sinusoidal input of
a specific frequency results in an output that is also a sinusoid with
the same frequency, but with a different amplitude and phase. The
frequency response function describes the amplitude change and phase
shift as a function of frequency.

To better understand the frequency response function, consider the
following description of a linear, dynamic system:

y t G q u t v t() () () ()= +

where u(t) and y(t) are the input and output signals, respectively. G(q)
is called the transfer function of the system—it captures the system

1-853

spa

dynamics that take the input to the output. The notation G(q)u(t)
represents the following operation:

G q u t g k u t k
k

() () () ()= −
=

∞

∑
1

q is the shift operator, defined by the following equation:

G q g k q q u t u tk

k

() () () ()= = −−

=

∞
−∑

1

1 1

G(q) is the frequency-response function, which is evaluated on the unit
circle, G(q=eiw).

Together, G(q=eiw) and the output noise spectrum ˆ ()Φv ω are the
frequency-domain description of the system.

The frequency-response function estimated using the Blackman-Tukey
approach is given by the following equation:

ˆ
ˆ

ˆG eN
i yu

u

ω ω

ω() = ()
()

Φ

Φ

In this case, ^ represents approximate quantities. For a derivation
of this equation, see the chapter on nonparametric time- and
frequency-domain methods in System Identification: Theory for the
User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

Output Noise Spectrum

The output noise spectrum (spectrum of v(t)) is given by the following
equation:

ˆ ˆ
ˆ

ˆΦ Φ
Φ

Φv y
yu

u
ω ω

ω

ω
() = () −

()
()

2

1-854

spa

This equation for the noise spectrum is derived by assuming the linear

relationship y t G q u t v t() () () ()= + , that u(t) is independent of v(t), and
the following relationships between the spectra:

Φ Φ Φy
i

u vG e() () ()ω ω ωω= () +
2

Φ Φyu
i

uG e() ()ω ωω= ()
where the noise spectrum is given by the following equation:

Φv v
iwR e() ()ω τ

τ

τ≡
=−∞

∞
−∑

ˆ ()Φ yu ω is the output-input cross-spectrum and ˆ ()Φu ω is the input
spectrum.

Alternatively, the disturbance v(t) can be described as filtered white
noise:

v t H q e t() () ()=

where e(t) is the white noise with variance λ and the noise power
spectrum is given by the following equation:

Φv
iH e()ω λ ω= () 2

Examples Estimate frequency response with fixed resolution at 128 equally
spaced, logarithmic frequency values between 0 (excluded) and π:

load iddata3;
z = z3; % z is an iddata object with Ts=1
g = spa(z);
bode(g)

1-855

spa

Estimate frequency response with fixed resolution at logarithmically
spaced frequencies:

% Define frequency vector
w = logspace(-2,pi,128);
% Compute frequency response
g= spa(z,[],w); % [] specifies the default lag window size
h = bodeplot(g);
showConfidence(h,3)
figure
h = spectrumplot(g);
showConfidence(h,3)
% The plots include confidence interval
% of 3 standard deviations

Algorithms spa applies the Blackman-Tukey spectral analysis method by following
these steps:

1 Computes the covariances and cross-covariance from u(t) and y(t):

ˆ

ˆ

ˆ

R y t y t

R u t u t

R

y N
t

N

u N
t

N

yu N

τ τ

τ τ

τ

() = +() ()

() = +() ()

() =

=

=

∑

∑

1

1

1

1

1 yy t u t
t

N
+() ()

=
∑ τ

1

1-856

spa

2 Computes the Fourier transforms of the covariances and the
cross-covariance:

ˆ () ˆ () ()

ˆ () ˆ () ()

Φ

Φ

y y
M

M

M
i

u u
M

M

M
i

R W e

R W e

ω τ τ

ω τ τ

τ

ωτ

τ

ωτ

=

=

=−

−

=−

−

∑

∑

ˆ̂ () ˆ () ()Φ yu yu
M

M

M
iR W eω τ τ

τ

ωτ=
=−

−∑

where WM ()τ is the Hann window with a width (lag size) of M. You
can specify M to control the frequency resolution of the estimate,
which is approximately equal 2π/M rad/sampling interval.

By default, this operation uses 128 equally spaced frequency values
between 0 (excluded) and π, where w = [1:128]/128*pi/Ts and
Ts is the sampling interval of that data set. The default lag size of
the Hann window is M = min(length(data)/10,30). For default
frequencies, uses fast Fourier transforms (FFT)—which is more
efficient than for user-defined frequencies.

Note M =γ is in Table 6.1 of Ljung (1999). Standard deviations are
on pages 184 and 188 in Ljung (1999).

3 Compute the frequency-response function Ĝ eN
iω() and the output

noise spectrum ˆ ()Φv ω .

ˆ
ˆ

ˆG eN
i yu

u

ω ω

ω() = ()
()

Φ

Φ

1-857

spa

Φv v
iwR e() ()ω τ

τ

τ≡
=−∞

∞
−∑

spectrum is the spectrum matrix for both the output and the input
channels. That is, if z = [data.OutputData, data.InputData],
spectrum contains as spectrum data the matrix-valued power spectrum
of z.

S Ez t m z t W T i m
m M

M

M s= +() ()′ () −()
=−
∑ exp

' is a complex-conjugate transpose.

References Ljung, L. System Identification: Theory for the User, Second Ed.,
Prentice Hall PTR, 1999.

See Also etfe | freqresp | idfrd | spafdr | bode | spectrum

How To • “Identifying Frequency-Response Models”

• “Spectrum Normalization”

1-858

spafdr

Purpose Estimate frequency response and spectrum using spectral analysis with
frequency-dependent resolution

Syntax g = spafdr(data)
g = spafdr(data,Resol,w)

Description spafdr estimates the idfrd object containing transfer function and the
noise spectrum Φυ of the general linear model

y t G q u t v t() () () ()= +

where Φυ(ω) is the spectrum of υ(t).

data contains the output-input data as an iddata object. The data can
be complex valued, and either time or frequency domain. It can also be
an idfrd object containing frequency-response data.

g is returned as an idfrd object (see idfrd) with the estimate of

G ei() at the frequencies ω specified by row vector w. g also includes
information about the spectrum estimate of Φυ(ω) at the same
frequencies. Both results are returned with estimated covariances,
included in g. See idfrd. The normalization of the spectrum is the
same as described under spa.

Frequencies

The frequency variable w is either specified as a row vector of
frequencies, or as a cell array {wmin,wmax}. In the latter case the
covered frequencies will be 50 logarithmically spaced points from
wmin to wmax. You can change the number of points to NP by entering
{wmin,wmax,NP}.

Omitting w or entering it as an empty matrix gives the default value,
which is 100 logarithmically spaced frequencies between the smallest
and largest frequency in data. For time-domain data, this means from
1/N*Ts to pi*Ts, where Ts is the sampling interval of data and N is
the number of data.

1-859

spafdr

Resolution

The argument Resol defines the frequency resolution of the estimates.
The resolution (measured in rad/s) is the size of the smallest detail
in the frequency function and the spectrum that is resolved by the
estimate. The resolution is a tradeoff between obtaining estimates with
fine, reliable details, and suffering from spurious, random effects: The
finer the resolution, the higher the variance in the estimate. Resol
can be entered as a scalar (measured in rad/s), which defines the
resolution over the whole frequency interval. It can also be entered
as a row vector of the same length as w. Then Resol(k) is the local,
frequency-dependent resolution around frequency w(k).

The default value of Resol, obtained by omitting it or entering it as the
empty matrix, is Resol(k) = 2(w(k+1)-w(k)), adjusted upwards, so
that a reasonable estimate is guaranteed. In all cases, the resolution is
returned in the variable g.EstimationInfo.WindowSize.

Algorithms If the data is given in the time domain, it is first converted to
the frequency domain. Then averages of Y(w)Conj(U(w)) and
U(w)Conj(U(w)) are formed over the frequency ranges w, corresponding
to the desired resolution around the frequency in question. The ratio of
these averages is then formed for the frequency-function estimate, and
corresponding expressions define the noise spectrum estimate.

See Also bode | etfe | freqresp | idfrd | nyquist | spa | spectrum

1-860

spectrum

Purpose Output power spectrum of time series models

Syntax spectrum(sys)
spectrum(sys,{wmin, wmax})
spectrum(sys,w)
spectrum(sys1,...,sysN,w)
ps = spectrum(sys,w)
[ps,w] = spectrum(sys)
[ps,w,sdps] = spectrum(sys)

Description spectrum(sys) creates an output power spectrum plot of the identified
time series model sys. The frequency range and number of points are
chosen automatically.

sys is a time series model, which represents the system:

y t He t() ()

Where, e(t) is a Gaussian white noise and y(t) is the observed output.

spectrum plots abs(H'H), scaled by the variance of e(t) and the sample
time.

If sys is an input-output model, it represents the system:

y t Gu t He t() () ()

Where, u(t) is the measured input, e(t) is a Gaussian white noise
and y(t) is the observed output.

In this case, spectrum plots the spectrum of the disturbance component
He(t).

spectrum(sys,{wmin, wmax}) creates a spectrum plot for frequencies
ranging from wmin to wmax.

spectrum(sys,w) creates a spectrum plot using the frequencies
specified in the vector w.

1-861

spectrum

spectrum(sys1,...,sysN,w) creates a spectrum plot of several
identified models on a single plot. The w argument is optional.

You can specify a color, line style and marker for each model. For
example:

spectrum(sys1,'r',sys2,'y--',sys3,'gx');

ps = spectrum(sys,w) returns the power spectrum amplitude of sys
for the specified frequencies, w. No plot is drawn on the screen.

[ps,w] = spectrum(sys) returns the frequency vector, w, for which
the output power spectrum is plotted.

[ps,w,sdps] = spectrum(sys) returns the estimated standard
deviations of the power spectrum.

For discrete-time models with sampling time Ts, spectrum uses the
transformation z = exp(j*w*Ts) to map the unit circle to the real
frequency axis. The spectrum is only plotted for frequencies smaller
than the Nyquist frequency pi/Ts, and the default value 1 (time unit) is
assumed when Ts is unspecified.

Input
Arguments

sys

Identified model.

If sys is a time series model, it represents the system:

y t He t() ()

Where, e(t) is a Gaussian white noise and y(t) is the observed output.

If sys is an input-output model, it represents the system:

y t Gu t He t() () ()

Where, u(t) is the measured input, e(t) is a Gaussian white noise
and y(t) is the observed output.

wmin

1-862

spectrum

Minimum frequency of the frequency range for which the output power
spectrum is plotted.

Specify wmin in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

wmax

Maximum frequency of the frequency range for which the output power
spectrum is plotted.

Specify wmax in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

w

Frequencies for which the output power spectrum is plotted.

Specify w in rad/TimeUnit, where TimeUnit is sys.TimeUnit.

sys1,...,sysN

Identified systems for which the output power spectrum is plotted.

Output
Arguments

ps

Power spectrum amplitude.

If sys has Ny outputs, then ps is an array of size [Ny Ny length(w)].
Where ps(:,:,k) corresponds to the power spectrum for the frequency
at w(k).

For amplitude values in dB, type psdb = 10*log10(ps).

w

Frequency vector for which the output power spectrum is plotted.

sdps

Estimated standard deviation of the power spectrum.

1-863

spectrum

Examples Noise Spectrum of SISO Linear Identified Model

Plot the noise spectrum of a single-input, single-output linear identified
model.

Obtain the identified model.

load iddata1 z1;
sys = n4sid(z1,2);

Plot the noise spectrum for the identified model.

spectrum(sys);

Output Spectrum of AR Model for 2-Mode Impulse Response

Plot the output spectrum of an AR model, computed for a 2-mode
impulse response of a dynamic system.

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4,'ls');

Plot the output spectrum of the identified model.

spectrum(sys);

See Also bode | freqresp | ar | arx | armax | nlarx | forecast

1-864

spectrumplot

Purpose Plot disturbance spectrum of linear identified models

Syntax spectrumplot(sys)
spectrumplot(sys,line_spec)
spectrumplot(sys1,line_spec1,...,sysN,line_specN)
spectrumplot(ax, ___)
spectrumplot(___ ,plot_options)
spectrumplot(sys,w)
h = spectrumplot(___)

Description spectrumplot(sys) plots the disturbance spectrum of the model, sys.
The software chooses the number of points on the plot and the plot
frequency range.

If sys is a time-series model, its disturbance spectrum is the same
as the model output spectrum. You generally use this function with
time-series models.

spectrumplot(sys,line_spec) uses line_spec to specify the line
type, marker symbol, and color.

spectrumplot(sys1,line_spec1,...,sysN,line_specN) plots the
disturbance spectrum for one or more models on the same axes.

You can mix sys,line_spec pairs with sys models as in
spectrumplot(sys1,sys2,line_spec2,sys3). spectrumplot
automatically chooses colors and line styles in the order specified by the
ColorOrder and LineStyleOrder properties of the current axes.

spectrumplot(ax, ___) plots into the axes with handle ax. All input
arguments described for the previous syntaxes also apply here.

spectrumplot(___ ,plot_options) uses plot_options to specify
options such as plot title, frequency units, etc. All input arguments
described for the previous syntaxes also apply here.

spectrumplot(sys,w) uses w to specify the plot frequencies.

• If w is specified as a 2-element cell array, {wmin, wmax}, the plot
spans the frequency range {wmin, wmax}.

1-865

spectrumplot

• If w is specified as vector, the spectrum is plotted for the specified
frequencies.

Specify w as radians/time_unit, where time_unit must equal
sys.TimeUnit.

h = spectrumplot(___) returns the handle to the spectrum plot. You
use the handle to customize the plot. All input arguments described for
the previous syntaxes also apply here.

Input
Arguments

sys

Identified linear model.

line_spec

Line style, marker, and color of both the line and marker.

Specify as one-, two-, or three-part string. The elements of the string
can appear in any order. The string can specify only the line style, the
marker, or the color.

For more information, see Lineseries Properties.

ax

Plot axes handle.

Specify as a double-precision value.

You can obtain the current axes handle by using the function, gca.

plot_options

Plot customization options.

Specify as a plot options object.

You use the command, spectrumoptions, to create plot_options.
For more information, type help spectrumoptions.

w

1-866

spectrumplot

Frequency range.

Specify in radians/time_unit, where time_unit must equal
sys.TimeUnit.

Output
Arguments

h

Plot handle for spectrum plot, returned as a double-precision value.

Examples Plot Model Output Spectrum for Identified Model

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Plot the output spectrum for the model.

spectrumplot(sys);

1-867

spectrumplot

Specify Line Width and Marker Style on Spectrum Plot

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Specify the line width and marker style for the spectrum plot.

spectrumplot(sys,'k*--');

The three-part string, 'k*--', specifies a dashed line (--). This line
is black (k) with star markers (*).

1-868

spectrumplot

Plot Multiple Models on the Same Axes

Obtain multiple identified models.

load iddata9 z9
sys1 = ar(z9,4);
sys2 = ar(z9,2);

Plot the output spectrum for both models.

spectrumplot(sys1,'b*-',sys2,'g^:');
legend('sys1','sys2');

1-869

spectrumplot

Specify Plot Axes for Spectrum Plot

Obtain the axes handle for a plot.

load iddata9 z9
sys1 = ar(z9,4);
spectrumplot(sys1);
ax = gca;

ax is the handle for the spectrum plot axes.

Plot the output spectrum for another model on the specified axes.

sys2 = ar(z9,2);

1-870

spectrumplot

hold on;
spectrumplot(ax,sys2,'r*--');

legend('sys1','sys2');

Specify Plot Options on Spectrum Plot

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

Specify the plot options.

plot_options = spectrumoptions;

1-871

spectrumplot

plot_options.FreqUnits = 'Hz';
plot_options.FreqScale = 'linear';
plot_options.Xlim = {[0 20]};
plot_options.MagUnits = 'abs';

Plot the output spectrum for the model.

spectrumplot(sys,plot_options);

Specify Spectrum Plot Frequency Range

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

1-872

spectrumplot

Specify the frequency range for the output spectrum plot for the model.

spectrumplot(sys,{1,1000});

The 2-element cell array {1,1000} specifies the frequency range from 1
rad/s to 1000 rad/s.

Get Plot Handle for Spectrum Plot Customization

Obtain the identified model.

load iddata9 z9
sys = ar(z9,4);

1-873

spectrumplot

Get the plot handle for the model spectrum plot.

h = spectrumplot(sys);

(Optional) Specify the plot options, using the plot handle.

setoptions(h,'FreqUnits','Hz','FreqScale','linear','Xlim',{[0 20]},'MagUn

See Also spectrum | getoptions | setoptions | showConfidence | Axes
Properties | Lineseries Properties

1-874

ss2ss

Purpose State coordinate transformation for state-space model

Syntax sysT = ss2ss(sys,T)

Description Given a state-space model sys with equations

x Ax Bu
y Cx Du

or the innovations form used by the identified state-space (IDSS)
models:

dx
dt

Ax Bu Ke

y Cx Du e

(or their discrete-time counterpart), ss2ss performs the similarity

transformation x Tx= on the state vector x and produces the equivalent
state-space model sysT with equations.

x TAT x TBu

y CT x Du

= +

= +

−

−

1

1

or, in the case of an IDSS model:

x x

x

TAT TBu TKe

y CT Du e

1

1

sysT = ss2ss(sys,T) returns the transformed state-space model sysT
given sys and the state coordinate transformation T. The model sys
must be in state-space form and the matrix T must be invertible. ss2ss
is applicable to both continuous- and discrete-time models.

Examples Perform a similarity transform to improve the conditioning of the A
matrix.

1-875

ss2ss

T = balance(sys.a)
sysb = ss2ss(sys,inv(T))

See Also balreal | canon

1-876

ssdata

Purpose Access state-space model data

Syntax [a,b,c,d] = ssdata(sys)
[a,b,c,d,Ts] = ssdata(sys)

Description [a,b,c,d] = ssdata(sys) extracts the matrix (or multidimensional
array) data A, B, C, D from the state-space model (LTI array) sys. If sys
is a transfer function or zero-pole-gain model (LTI array), it is first
converted to state space. See ss for more information on the format
of state-space model data.

If sys appears in descriptor form (nonempty E matrix), an equivalent
explicit form is first derived.

If sys has internal delays, A, B, C, D are obtained by first setting all
internal delays to zero (creating a zero-order Padé approximation).
For some systems, setting delays to zero creates singular algebraic
loops, which result in either improper or ill-defined, zero-delay
approximations. For these systems, ssdata cannot display the matrices
and returns an error. This error does not imply a problem with the
model sys itself.

[a,b,c,d,Ts] = ssdata(sys) also returns the sample time Ts.

You can access the remaining LTI properties of sys with get or by
direct referencing. For example:

sys.statename

For arrays of state-space models with variable numbers of states, use
the syntax:

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the
cell arrays a, b, c, and d.

See Also dssdata | get | getdelaymodel | idssdata | set | ss | tfdata |
zpkdata

1-877

ssest

Purpose Estimate state-space model using time or frequency domain data

Syntax sys = ssest(data,nx)
sys = ssest(data,nx,Name,Value)
sys = ssest(data,init_sys)
sys = ssest(data, ___ ,opt)

Description sys = ssest(data,nx) estimates a state-space model, sys, using time
or frequency domain data, data. sys is a state-space model of order
nx and represents:

x t Ax t Bu t Ke t
y t Cx t Du t e t
() () () ()
() () () ()

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the
output, e(t) is the disturbance and x(t) is the vector of nx states. All the
entries of A, B, C, and K are estimable parameters. The elements of the
D matrix, however, are fixed to zero. That is, there is no feedthrough.

sys = ssest(data,nx,Name,Value) estimates the model using
the additional options specified by one or more Name,Value pair
arguments.

sys = ssest(data,init_sys) estimates a state-space model using the
dynamic system init_sys to configure the initial parameterization.

sys = ssest(data, ___ ,opt) estimates the model using an option
set, opt.

Input
Arguments

data

Estimation data.

For time domain estimation, data must be an iddata object containing
the input and output signal values.

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

1-878

ssest

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — 'Frequency'

nx

Order of estimated model.

Specify nx as a positive integer. nx may be a scalar or a vector. If nx
is a vector, then ssest creates a plot which you can use to choose a
suitable model order. The plot shows the Hankel singular values for
models of different orders. States with relatively small Hankel singular
values can be safely discarded. A default choice is suggested in the plot.

opt

Estimation options.

opt is an options set, created using ssestOptions, that specifies
options including:

• Estimation objective

• Handling of initial conditions

• Numerical search method to be used in estimation

init_sys

Dynamic system that configures the initial parameterization of sys.

If init_sys is an idss model, ssest uses the parameter values
of init_sys as the initial guess for estimating sys. Constraints
on the parameters of init_sys, such as fixed coefficients and
minimum/maximum bounds are honored in estimating sys.

If init_sys is not an idssmodel, the software first converts init_sys
to an idss model. ssest uses the parameters of the resulting model as
the initial guess for estimation.

1-879

ssest

Use the Structure property of init_sys to configure initial guesses
and constraints for the A, B, C , D and K matrices.

To specify an initial guess for, say, the A matrix of init_sys, set
init_sys.Structure.a.Value as the initial guess.

To specify constraints for, say, the B matrix of init_sys:

• set init_sys.Structure.b.Minimum to the minimum B matrix value

• set init_sys.Structure.b.Maximum to the maximum Bmatrix value

• set init_sys.Structure.b.Free to indicate if entries of the B
matrix are free parameters for estimation

You can similarly specify the initial guess and constraints for the other
matrices.

Name-Value
Pair
Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Ts

Sampling time.

For continuous-time models, use Ts = 0. For discrete-time models,
specify Ts as a positive scalar whose value is equal to the data sampling
time.

Default: 0 (continuous-time)

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period

1-880

ssest

Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

Form

Type of canonical form of sys.

Form is a string that takes one of the following values:

• 'modal' — Obtainsys in modal form.

• 'companion' — Obtain sys in companion form.

• 'free'— All entries of the A, B and C matrices are treated as free.

• 'canonical'— Obtain sys in the observable canonical form [1].

Default: 'free'

Feedthrough

Logical specifying direct feedthrough from input to output.

Feedthrough is a logical vector of length Nu, where Nu is the number of
inputs.

If Feedthrough is specified as a logical scalar, it is applied to all the
inputs.

DisturbanceModel

Specifies if the noise component, the K matrix, is to be estimated.

DisturbanceModel takes one of the following values:

1-881

ssest

• 'none' — Noise component is not estimated. The value of the K
matrix is fixed to zero value.

• 'estimate'— The K matrix is treated as a free parameter.

DisturbanceModel must be 'none' when using frequency domain data.

Default: 'estimate' (For time domain data)

Output
Arguments

sys

Identified state space model.

sys is an idss model, which encapsulates the identified state space
model.

x0

Initial states computed during the estimator of sys.

If data contains multiple experiments, then x0 is an array with each
column corresponding to an experiment.

Definitions Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically
1-by-1 for real eigenvalues and 2-by-2 for complex eigenvalues.
However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (, ,) 1 2± j , the modal A
matrix is of the form

1

2

0 0 0
0 0
0 0
0 0 0

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1-882

ssest

Companion Form

In the companion realization, the characteristic polynomial of the
system appears explicitly in the right-most column of the A matrix. For
a system with characteristic polynomial

p s s s sn n
n n() = + + + +−
− 1

1
1

the corresponding companion A matrix is

A

n

n

=

−
− −

−
−

⎡

⎣

⎢
⎢
⎢

0 0 0
1 0 0 0 1
0 1 0

0
0 1 0
0 0 1

2

1

.. ..
..
.

. .
. .
.. ..

: :
: : :⎢⎢

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

The companion transformation requires that the system be controllable
from the first input. The companion form is poorly conditioned for most
state-space computations; avoid using it when possible.

Examples Determine Optimal Estimated Model Order

Estimate a state-space model for measured input-output data.
Determine the optimal model order within a given range.

Obtain measured input-output data.

load icEngine.mat;
data = iddata(y,u,0.04);

data is an iddata object containing 1500 input-output data samples.
The data sampling time is 0.04 seconds.

Estimate a state-space model for measured input-output data.
Determine the optimal model order within a given model order range.

1-883

ssest

nx = 1:10;
sys = ssest(data,nx);

A plot appears:

The plot shows the Hankel singular values (SVD) for models of the
orders specified by nx. States with relatively small Hankel singular
values can be safely discarded. The default order choice is 2.

At the MATLAB command prompt, you select the model order for the
estimated state-space model. Specify the model order, or press Enter to
use the default order value.

1-884

ssest

Identify State-Space Model With Input Delay

Identify a state-space model containing an input delay for given data.

Load time domain system response data, and use it to identify a
state-space model for the system. Specify a known input delay for the
model.

load iddata7 z7
nx = 4;
sys = ssest(z7(1:300),nx,'InputDelay',[2;0])

z7 is an iddata object that contains time domain system response data.

nx specifies a fourth order identified state-space model.

The name-value input argument pair 'InputDelay',[2;0] specifies
an input delay of 2 seconds for the first input and 0 seconds for the
second output.

sys is an idss model containing the identified state-space model.

Estimate State-Space Model for Partially Known Model
(Structured Estimation)

Estimate a state-space model using measured input-output data.
Configure the parameter constraints and initial values for estimation
using a state-space model.

Create an idss model to specify the initial parameterization for
estimation.

For this example, configure an idss model so that it has no
state-disturbance element and only the nonzero entries of the A matrix
are estimable. Additionally, fix the values of the B matrix.

A = blkdiag([-0.1 0.4; -0.4 -0.1],[-1 5; -5 -1]);
B = [1; zeros(3,1)];
C = [1 1 1 1];
D = 0;
K = zeros(4,1);

1-885

ssest

x0 = [0.1,0.1,0.1,0.1];
Ts = 0;
init_sys = idss(A,B,C,D,K,x0,Ts);

Setting all entries of K = 0 creates an idss model with no state
disturbance element.

Use the Structure property of init_sys to fix the values of some of
the parameters.

init_sys.Structure.a.Free = (A~=0);
init_sys.Structure.b.Free = false;
init_sys.Structure.k.Free = false;

The entries in init_sys.Structure.a.Free determine whether the
corresponding entries in init_sys.a are free (identifiable) or fixed. The
first line sets init_sys.Structure.a.Free to a matrix that is true
wherever A is nonzero, and false everywhere else. Doing so fixes the
value of the zero entries in init_sys.a.

The remaining lines fix all the values in init_sys.b and init_sys.k to
the values you specified when you created the model.

Load the measured data and estimate a state-space model using the
parameter constraints and initial values specified by init_sys.

load iddata2 z2;
sys = ssest(z2,init_sys);

sys is an idss model that encapsulates the fourth-order, state-space
model estimated for the measured data z2. The estimated parameters
of sys successfully satisfy the constraints specified by init_sys.

Model Order Reduction by Estimation

This example shows how to reduce the order of a model by estimation.

For this example, consider the Simulink® model idF14Model.
Linearizing this model gives a ninth order model. However, the

1-886

ssest

dynamics of the model can be captured, without compromising the fit
quality too much, using a lower-order model.

Obtain the linearized model.

open_system('idF14Model');
io = getlinio('idF14Model');
sys_lin = linearize('idF14Model',io);

sys_lin is a ninth order state-space model with two outputs and
one input. It represents the linearization of the Simulink model
idF14Model.

Simulate the step response of the linearized model, and create an
iddata object.

Ts = 0.0444;
t = (0:Ts:4.44)';
y = step(sys_lin,t);

data = iddata([zeros(20,2);y],[zeros(20,1); ones(101,1)],Ts);

data is an iddata object that encapsulates the step response of sys_lin.

Compare the data to the model linearization.

compare(data, sys_lin)

1-887

ssest

Given that the data was obtained by simulating the linearized model,
there is a 100% match between the data and model linearization
response.

Identify a state-space model with a reduced order that adequately fits
the data.

nx = 1:9;
sys1 = ssest(data,nx,'DisturbanceModel','none');

As the model order input for ssest, nx, is specified as a vector, a plot
appears. The plot shows the Hankel singular values (SVD) for models of
the orders specified by nx. States with relatively small Hankel singular
values can be safely discarded. The plot suggests using a fifth-order
model. At the MATLAB command prompt, you select the model order

1-888

ssest

for the estimated state-space model. Specify the model order as 5, or
press Enter to use the default order value.

sys1 provides a 98.6% fit for the first output and a 97.2% fit for the
second output.

Examine the stopping condition for the search algorithm.

sys1.Report.Termination.WhyStop

ans =

Maximum number of iterations reached

Create an estimation option set that uses the 'lm' search method and
allows 50 search iterations at most.

opt = ssestOptions('SearchMethod','lm');
opt.SearchOption.MaxIter = 50;
opt.Display = 'on';

Identify a state-space model using the estimation option set and sys1
as the estimation initialization model.

sys2 = ssest(data, sys1, opt);

Compare the response of the linearized and the estimated models.

compare(data,sys_lin,sys2);

1-889

ssest

sys2 provides a 99.93% fit for the first output and a 98% fit for the
second output while using 4 less states than sys_lin.

Algorithms ssest initializes the parameter estimates using a noniterative subspace
approach. It then refines the parameter values using the prediction
error minimization approach. See pem for more information.

References [1] Ljung, L. System Identification: Theory For the User, Second Edition,
Appendix 4A, pp 132-134, Upper Saddle River, N.J: Prentice Hall, 1999.

See Also ssestOptions | idss | n4sid | tfest | procest | polyest |
iddata | idfrd | canon | idgrey | pem

1-890

ssestOptions

Purpose Option set for ssest

Syntax opt = ssestOptions
opt = ssestOptions(Name,Value)

Description opt = ssestOptions creates the default options set for ssest.

opt = ssestOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitialState’

Specify handling of initial states during estimation.

InitialState requires one of the following values:

• 'zero' — The initial state is set to zero.

• 'estimate' — The initial state is treated as an independent
estimation parameter.

• 'backcast' — The initial state is estimated using the best least
squares fit.

• 'auto'— ssest chooses the initial state handling method, based on
the estimation data. The possible initial state handling methods are
'zero', 'estimate' and 'backcast'.

• Vector of doubles — Specify a column vector of length Nx, where
Nx is the number of states. For multi-experiment data, specify a
matrix with Ne columns, where Ne is the number of experiments.
The specified values are treated as fixed values during the estimation
process.

1-891

ssestOptions

• Parametric initial condition object (x0obj) — Specify initial
conditions by using idpar to create a parametric initial condition
object. You can specify minimum/maximum bounds and fix the
values of specific states using the parametric initial condition object.
The free entries of x0obj are estimated together with the idss model
parameters.

Use this option only for discrete-time state-space models.

Default: 'auto'

’N4Weight’

Weighting scheme used for singular-value decomposition by the N4SID
algorithm.

'N4Weight' requires one of the following values:

• 'MOESP'— Uses the MOESP algorithm by Verhaegen [2].

• 'CVA'— Uses the Canonical Variable Algorithm by Larimore [1].

• 'auto'— The estimating function chooses between the MOESP and
CVA algorithms.

Default: 'auto'

’N4Horizon’

Forward and backward prediction horizons used by the N4SID
algorithm.

'N4Horizon' requires one of the following values:

• A row vector with three elements — [r sy su], where r is the
maximum forward prediction horizon. The algorithm uses up to r
step-ahead predictors. sy is the number of past outputs, and su is the
number of past inputs that are used for the predictions. See pages
209 and 210 in [4] for more information. These numbers can have a
substantial influence on the quality of the resulting model, and there
are no simple rules for choosing them. Making 'N4Horizon' a k-by-3

1-892

ssestOptions

matrix means that each row of 'N4Horizon' is tried, and the value
that gives the best (prediction) fit to data is selected. k is the number
of guesses of [r sy su] combinations. If you specify N4Horizon as
a single column, r = sy = su is used.

• 'auto'— The software uses an Akaike Information Criterion (AIC)
for the selection of sy and su.

Default: auto

’Focus’

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation' — Estimates a stable model using the frequency
weighting of the transfer function given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

• 'prediction'— Automatically calculates the weighting function as
a product of the input spectrum and the inverse of the noise model.
This option minimizes the one-step-ahead prediction, which typically
favors fitting small time intervals (higher frequency range). From a
statistical-variance point of view, this weighting function is optimal .
However, this method neglects the approximation aspects (bias) of
the fit, and might not result in a stable model. Use 'stability'
when you want to ensure a stable model.

• 'stability' — Same as 'prediction', except that this method
enforces model stability.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

1-893

ssestOptions

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To
obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'prediction'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

1-894

ssestOptions

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

1-895

ssestOptions

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’OutputWeight’

Specifies criterion used during minimization.

OutputWeight can have the following values:

• 'noise'— Minimize det(’*)E E , where E represents the prediction
error. This choice is optimal in a statistical sense and leads to
maximum likelihood estimates if nothing is known about the variance
of the noise. It uses the inverse of the estimated noise variance as the
weighting function.

Note OutputWeight must not be `noise' if SearchMethod is
'lsqnonlin'.

• Positive semidefinite symmetric matrix (W) — Minimize the trace
of the weighted prediction error matrix trace(E'*E*W). E is the
matrix of prediction errors, with one column for each output, and
W is the positive semidefinite symmetric matrix of size equal to
the number of outputs. Use W to specify the relative importance of
outputs in multiple-input, multiple-output models, or the reliability
of corresponding data.

This option is relevant for only multi-input, multi-output models.

• []— The software chooses between the 'noise' or using the identity
matrix for W.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

1-896

ssestOptions

SearchMethod requires one of the following values:

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [3]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular
values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). gamma is increased by the
factor LMStep each time the search fails to find a lower value of the
criterion in less than 5 bisections. gamma is decreased by the factor
2*LMStep each time a search is successful without any bisections.

• 'lm' — Uses the Levenberg-Marquardt method, so that the next
parameter value is -pinv(H+d*I)*grad from the previous one. H is
the Hessian, I is the identity matrix, and grad is the gradient. d is a
number that is increased until a lower value of the criterion is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from the Optimization
Toolbox software. This search method can only handle the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto'— The algorithm chooses one of the preceding options. The
descent direction is calculated using 'gn', 'gna', 'lm', and 'grad'
successively, at each iteration. The iterations continue until a
sufficient reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-897

ssestOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-898

ssestOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-899

ssestOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-900

ssestOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [4].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive integer.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial conditions.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-901

ssestOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialState is 'auto'.

Default: 1.05

• DDC— Specifies if the Data Driven Coordinates algorithm [5] is used
to estimate freely parameterized state-space models.

Specify DDC as one of the following values:

- 'on' — The free parameters are projected to a reduced space
of identifiable parameters using the Data Driven Coordinates
algorithm.

- 'off'— All the entries of A, B, and C updated directly using the
chosen SearchMethod.

Default: 'on'

Output
Arguments

opt

Option set containing the specified options for ssest.

Examples Create Default Options Set for State Space Estimation

opt = ssestOptions;

Specify Options for State Space Estimation

Create an options set for ssest using the 'backcast' algorithm to
initialize the state and set the Display to 'on'.

opt = ssestOptions('InitialState','backcast','Display','on');

Alternatively, use dot notation to set the values of opt.

1-902

ssestOptions

opt = ssestOptions;
opt.InitialState = 'backcast';
opt.Display = 'on';

References [1] Larimore, W.E. "Canonical variate analysis in identification,
filtering and adaptive control." Proceedings of the 29th IEEE Conference
on Decision and Control, pp. 596–604, 1990.

[2] Verhaegen, M. “Identification of the deterministic part of MIMO
state space models.” Automatica, Vol. 30, No. 1, 1994, pp. 61–74.

[3] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates.” Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[4] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

[5] McKelvey, T., A. Helmersson,, and T. Ribarits.. “Data driven local
coordinates for multivariable linear systems and their application
to system identification.” Automatica, Volume 40, No. 9, 2004, pp.
1629–1635.

See Also ssest

1-903

ssform

Purpose Quick configuration of state-space model structure

Syntax sys1 = ssform(sys,Name,Value)

Description sys1 = ssform(sys,Name,Value) specifies the type of
parameterization and whether feedthrough and disturbance dynamics
are present for the state-space model sys using one or more
Name,Value pair arguments.

Input
Arguments

sys

State-space model

Name-Value Pair Arguments

Specify comma-separated pairs of Name,Value arguments, where
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Form’

Specify structure of A, B and C matrices. Must be one of the following
strings:

• 'free'

All entries of A, B, C are set free

• 'companion'

Companion form of the model where the characteristic polynomial
appears in the far-right column of the state matrix A

• 'modal'

Modal decomposition form, where the state matrix A is block
diagonal. Each block corresponds to a real or complex-conjugate pair
of poles.

You cannot use this value for models with repeated poles.

1-904

ssform

• 'canonical'

Observability canonical form of A, B, and C matrices, as described in
[1].

’Feedthrough’

Specify whether the model has direct feedthrough from the input u(t) to
the output y(t), (whether the elements of the matrix D are nonzero).

Must be a logical vector (true or false) of length equal to the number
of inputs (Nu).

Feedthrough(i) = false sets sys.Structure.d.Value(:,i) to zero
and sys.Structure.d.Free(:,i) to false.

Feedthrough(i) = true sets sys.Structure.d.Free(:,i) to true.

Note Specifying this option for a previously estimated model causes the
model parameter covariance information to be lost. Use translatecov
to recompute the covariance.

’DisturbanceModel’

Specify whether to estimate the noise component of the model. Must be
one of the following strings:

• 'none'

The value of the K matrix is fixed to zero.

• 'estimate'

The K matrix is treated as a free parameter

Note Specifying this option for a previously estimated model causes the
model parameter covariance information to be lost. Use translatecov
to recompute the covariance.

1-905

ssform

Output
Arguments

sys1

State-space model with configured parameterization, feedthrough, and
disturbance dynamics

Examples Convert a State-Space Model to Canonical Form

Create a state-space model.

rng('default');
A = randn(2)-2*eye(2);
B = randn(2,1);
C = randn(1,2);
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

The state-space model has free parameterization and no feedthrough.

Convert the model to observability canonical form.

model1 = ssform(model, 'Form', 'canonical');

Estimate State-Space Model Parameters in Canonical Form
with Feedthrough

Load the estimation data.

load iddata1 z1;

Create a state-space model.

rng('default');
A = randn(2)-2*eye(2);
B = randn(2,1);
C = randn(1,2);
D = 0;
K = randn(2,1);
model = idss(A,B,C,D,K,'Ts',0);

1-906

ssform

The state-space model has free parameterization and no feedthrough.

Convert the model to observability canonical form and specify to
estimate its feedthrough behavior.

model1 = ssform(model, 'Form', 'canonical', 'Feedthrough', true);

Estimate the parameters of the model.

model2 = ssest(z1, model1);

References [1] Ljung, L. System Identification: Theory For the User, Second Edition,
Appendix 4A, pp 132-134, Upper Saddle River, N.J: Prentice Hall, 1999.

Alternatives Use the Structure property of an idss model to specify the
parameterization, feedthrough, and disturbance dynamics by modifying
the Value and Free attributes of the A, B, C, D and K parameters.

See Also idss | ssest | n4sid

Related
Examples

• “How to Estimate State-Space Models at the Command Line”

Concepts • “Supported State-Space Parameterizations”

1-907

stack

Purpose Build model array by stacking models or model arrays along array
dimensions

Syntax sys = stack(arraydim,sys1,sys2,...)

Description sys = stack(arraydim,sys1,sys2,...) produces an array of
dynamic system models sys by stacking (concatenating) the models
(or arrays) sys1,sys2,... along the array dimension arraydim. All
models must have the same number of inputs and outputs (the same
I/O dimensions), but the number of states can vary. The I/O dimensions
are not counted in the array dimensions. For more information about
model arrays and array dimensions, see “Model Arrays”.

For arrays of state-space models with variable order, you cannot use the
dot operator (e.g., sys.a) to access arrays. Use the syntax

[a,b,c,d] = ssdata(sys,'cell')

to extract the state-space matrices of each model as separate cells in the
cell arrays a, b, c, and d.

Examples Example 1

If sys1 and sys2 are two models:

• stack(1,sys1,sys2) produces a 2-by-1 model array.

• stack(2,sys1,sys2) produces a 1-by-2 model array.

• stack(3,sys1,sys2) produces a 1-by-1-by-2 model array.

Example 2

Stack identified state-space models derived from the same estimation
data and compare their bode responses.

load iddata1 z1
sysc = cell(1,5);
opt = ssestOptions('Focus','simulation');
for i = 1:5

1-908

stack

sysc{i} = ssest(z1,i-1,opt);
end
sysArray = stack(1, sysc{:});
bode(sysArray);

1-909

step

Purpose Step response plot of dynamic system

Syntax step(sys)
step(sys,Tfinal)
step(sys,t)
step(sys1,sys2,...,sysN)
step(sys1,sys2,...,sysN,Tfinal)
step(sys1,sys2,...,sysN,t)
y = step(sys,t)
[y,t] = step(sys)
[y,t] = step(sys,Tfinal)
[y,t,x] = step(sys)
[y,t,x,ysd] = step(sys)
[y,...] = step(sys,...,options)

Description step calculates the step response of a dynamic system. For the state
space case, zero initial state is assumed. When it is invoked with no
output arguments, this function plots the step response on the screen.

step(sys) plots the step response of an arbitrary dynamic system
model sys. This model can be continuous or discrete, and SISO or
MIMO. The step response of multi-input systems is the collection of
step responses for each input channel. The duration of simulation is
determined automatically, based on the system poles and zeros.

step(sys,Tfinal) simulates the step response from t = 0 to the
final time t = Tfinal. Express Tfinal in the system time units,
specified in the TimeUnit property of sys. For discrete-time systems
with unspecified sampling time (Ts = -1), step interprets Tfinal as
the number of sampling periods to simulate.

step(sys,t) uses the user-supplied time vector t for simulation.
Express t in the system time units, specified in the TimeUnit property
of sys. For discrete-time models, t should be of the form Ti:Ts:Tf,
where Ts is the sample time. For continuous-time models, t should
be of the form Ti:dt:Tf, where dt becomes the sample time of a
discrete approximation to the continuous system (see “Algorithms” on

1-910

step

page 1-916). The step command always applies the step input at t=0,
regardless of Ti.

To plot the step response of several modelssys1,..., sysN on a single
figure, use

step(sys1,sys2,...,sysN)

step(sys1,sys2,...,sysN,Tfinal)

step(sys1,sys2,...,sysN,t)

All of the systems plotted on a single plot must have the same number
of inputs and outputs. You can, however, plot a mix of continuous- and
discrete-time systems on a single plot. This syntax is useful to compare
the step responses of multiple systems.

You can also specify a distinctive color, linestyle, marker, or all three
for each system. For example,

step(sys1,'y:',sys2,'g--')

plots the step response of sys1 with a dotted yellow line and the step
response of sys2 with a green dashed line.

When invoked with output arguments:

y = step(sys,t)

[y,t] = step(sys)

[y,t] = step(sys,Tfinal)

[y,t,x] = step(sys)

step returns the output response y, the time vector t used for
simulation (if not supplied as an input argument), and the state
trajectories x (for state-space models only). No plot generates on the
screen. For single-input systems, y has as many rows as time samples
(length of t), and as many columns as outputs. In the multi-input case,
the step responses of each input channel are stacked up along the third
dimension of y. The dimensions of y are then

1-911

step

() () ()lengthof t number of outputs number of inputs× ×

and y(:,:,j) gives the response to a unit step command injected in the
jth input channel. Similarly, the dimensions of x are

() () ()lengthof t number of states number of inputs× ×

For identified models (see idlti and idnlmodlel) [y,t,x,ysd] =
step(sys) also computes the standard deviation ysd of the response y
(ysd is empty if sys does not contain parameter covariance information).

[y,...] = step(sys,...,options) specifies additional options for
computing the step response, such as the step amplitude or input offset.
Use stepDataOptions to create the option set options.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Step Response Plot of Dynamic System

Plot the step response of the following second-order state-space model.

x
x

x
x

1

2

1

2

0 5572 0 7814
0 7814 0

1 1
0 2

⎡

⎣
⎢

⎤

⎦
⎥ =

− −⎡

⎣
⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥ +

−⎡

⎣

. .
. ⎢⎢

⎤

⎦
⎥
⎡

⎣
⎢

⎤

⎦
⎥

= []⎡
⎣
⎢

⎤

⎦
⎥

u
u

y
x
x

1

2

1

2
1 9691 6 4493. .

a = [-0.5572 -0.7814;0.7814 0];
b = [1 -1;0 2];
c = [1.9691 6.4493];
sys = ss(a,b,c,0);
step(sys)

1-912

step

The left plot shows the step response of the first input channel, and the
right plot shows the step response of the second input channel.

Example 2

Step Response Plot of Feedback Loop with Delay

Create a feedback loop with delay and plot its step response by typing

G = exp(-s) * (0.8*s^2+s+2)/(s^2+s);
T = feedback(ss(G),1);
step(T)

1-913

step

Note The system step response displayed is chaotic. The step response
of systems with internal delays may exhibit odd behavior, such as
recurring jumps. Such behavior is a feature of the system and not
software anomalies.

Example 3

Compare the step response of a parametric identified model to a
non-parametric (empirical) model/ Also view their 3-σ confidence
regions.

load iddata1 z1
sys1 = ssest(z1,4);

parametric model

1-914

step

sys2 = impulseest(z1);

non-parametric model

[y1, ~, ~, ysd1] = step(sys1,t);
[y2, ~, ~, ysd2] = step(sys2,t);

plot(t, y1, 'b', t, y1+3*ysd1, 'b:', t, y1-3*ysd1, 'b:')
hold on
plot(t, y2, 'g', t, y2+3*ysd2, 'g:', t, y2-3*ysd2, 'g:')

Example 4

Validation the linearization of a nonlinear ARX model by comparing
their small amplitude step responses.

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

Determine an equilibrium operating point for nlsys corresponding to a
steady-state input value of 1:

u0 = 1;
[X,~,r] = findop(nlsys, 'steady', 1);
y0 = r.SignalLevels.Output;

Obtain a linear approximation of nlsys at this operating point.

sys = linearize(nlsys,u0,X)

Now validate the usefulness of sys by comparing its small-amplitude
step response to that of nlsys. The nonlinear system nlsys is operating
an equilibrium level dictated by (u0, y0). About this steady-state, we
introduce a step perturbation of size 0.1. The corresponding response is
computed as follows:

opt = stepDataOptions;
opt.InputOffset = u0;
opt.StepAmplitude = 0.1;

1-915

step

t = (0:0.1:10)';

ynl = step(nlsys, t, opt);

The linear system sys expresses the relationship between the
perturbations in input to the corresponding perturbation in output. It is
unaware of nonlinear system’s equilibrium values. The step response of
the linear system is:

opt = stepDataOptions;
opt.StepAmplitude = 0.1;
yl = step(sys, t, opt);

To compare, add the steady-state offset, y0, to the response of the linear
system:

plot(t, ynl, t, yl+y0)
legend('Nonlinear', 'Linear with offset')

Example 5

Compute the step response of an identified time series model.

A time series model, also called a signal model, is one without measured
input signals. The step plot of this model uses its (unmeasured) noise
channel as the input channel to which the step signal is applied.

load iddata9
sys = ar(z9, 4);

ys is a model of the form A y(t) = e(t), where e(t) represents the
noise channel. For computation of step response, e(t) is treated as an
input channel, and is named "e@y1".

step(sys)

Algorithms Continuous-time models without internal delays are converted to
state space and discretized using zero-order hold on the inputs. The
sampling period, dt, is chosen automatically based on the system
dynamics, except when a time vector t = 0:dt:Tf is supplied (dt is

1-916

step

then used as sampling period). The resulting simulation time steps t
are equisampled with spacing dt.

For systems with internal delays, Control System Toolbox software uses
variable step solvers. As a result, the time steps t are not equisampled.

References [1] L.F. Shampine and P. Gahinet, "Delay-differential-algebraic
equations in control theory," Applied Numerical Mathematics, Vol. 56,
Issues 3–4, pp. 574–588.

See Also impulse | stepDataOptions | initial | lsim | ltiview

1-917

stepDataOptions

Purpose Options set for step

Syntax opt = stepDataOptions
opt = stepDataOptions(Name,Value)

Description opt = stepDataOptions creates the default options for step.

opt = stepDataOptions(Name,Value) creates an options set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InputOffset’

Input signal level for all time t < 0, as shown in the next figure.

Default: 0

1-918

stepDataOptions

’StepAmplitude’

Change of input signal level which occurs at time t = 0, as shown in
the previous figure.

Default: 1

Output
Arguments

opt

Option set containing the specified options for step.

Specify
Input
Offset
and Step
Amplitude
Level

Specify the input offset and amplitude level for step response.

sys = tf(1,[1,1]);
opt = stepDataOptions('InputOffset',-1,'StepAmplitude',2);
[y,t] = step(sys,opt)

See Also step

1-919

stepinfo

Purpose Rise time, settling time, and other step response characteristics

Syntax S = stepinfo(y,t,yfinal)
S = stepinfo(y,t)
S = stepinfo(y)
S = stepinfo(sys)
S = stepinfo(...,'SettlingTimeThreshold',ST)
S = stepinfo(...,'RiseTimeLimits',RT)

Description S = stepinfo(y,t,yfinal) takes step response data (t,y) and a
steady-state value yfinal and returns a structure S containing the
following performance indicators:

• RiseTime — Rise time

• SettlingTime — Settling time

• SettlingMin— Minimum value of y once the response has risen

• SettlingMax— Maximum value of y once the response has risen

• Overshoot— Percentage overshoot (relative to yfinal)

• Undershoot — Percentage undershoot

• Peak — Peak absolute value of y

• PeakTime — Time at which this peak is reached

For SISO responses, t and y are vectors with the same length NS.
For systems with NU inputs and NY outputs, you can specify y as an
NS-by-NY-by-NU array (see step) and yfinal as an NY-by-NU array.
stepinfo then returns a NY-by-NU structure array S of performance
metrics for each I/O pair.

S = stepinfo(y,t) uses the last sample value of y as steady-state
value yfinal. S = stepinfo(y) assumes t = 1:ns.

S = stepinfo(sys)computes the step response characteristics for an
LTI model sys (see tf, zpk, or ss for details).

S = stepinfo(...,'SettlingTimeThreshold',ST) lets you specify
the threshold ST used in the settling time calculation. The response

1-920

stepinfo

has settled when the error |y(t) - yfinal| becomes smaller than a
fraction ST of its peak value. The default value is ST=0.02 (2%).

S = stepinfo(...,'RiseTimeLimits',RT) lets you specify the lower
and upper thresholds used in the rise time calculation. By default,
the rise time is the time the response takes to rise from 10 to 90% of
the steady-state value (RT=[0.1 0.9]). Note that RT(2) is also used
to calculate SettlingMin and SettlingMax.

Examples Step Response Characteristics of Fifth-Order System

Create a fifth order system and ascertain the response characteristics.

sys = tf([1 5],[1 2 5 7 2]);
S = stepinfo(sys,'RiseTimeLimits',[0.05,0.95])

These commands return the following result:

S =

RiseTime: 7.4454
SettlingTime: 13.9378
SettlingMin: 2.3737
SettlingMax: 2.5201

Overshoot: 0.8032
Undershoot: 0

Peak: 2.5201
PeakTime: 15.1869

See Also step | lsiminfo

1-921

stepplot

Purpose Plot step response and return plot handle

Syntax h = stepplot(sys)
stepplot(sys,Tfinal)
stepplot(sys,t)
stepplot(sys1,sys2,...,sysN)
stepplot(sys1,sys2,...,sysN,Tfinal)
stepplot(sys1,sys2,...,sysN,t)
stepplot(AX,...)
stepplot(..., plotoptions)

Description h = stepplot(sys) plots the step response of the dynamic system
model sys. It also returns the plot handle h. You can use this handle to
customize the plot with the getoptions and setoptions commands.
Type

help timeoptions

for a list of available plot options.

For multiinput models, independent step commands are applied to
each input channel. The time range and number of points are chosen
automatically.

stepplot(sys,Tfinal) simulates the step response from t = 0 to
the final time t = Tfinal. Express Tfinal in the system time units,
specified in the TimeUnit property of sys. For discrete-time systems
with unspecified sampling time (Ts = -1), stepplot interprets Tfinal
as the number of sampling intervals to simulate.

stepplot(sys,t) uses the user-supplied time vector t for simulation.
Express t in the system time units, specified in the TimeUnit property
of sys. For discrete-time models, t should be of the form Ti:Ts:Tf,
where Ts is the sample time. For continuous-time models, t should be
of the form Ti:dt:Tf, where dt becomes the sample time of a discrete
approximation to the continuous system (see step). The stepplot
command always applies the step input at t=0, regardless of Ti.

1-922

stepplot

To plot the step responses of multiple models sys1,sys2,... on a single
plot, use:

stepplot(sys1,sys2,...,sysN)

stepplot(sys1,sys2,...,sysN,Tfinal)

stepplot(sys1,sys2,...,sysN,t)

You can also specify a color, line style, and marker for each system, as in

stepplot(sys1,'r',sys2,'y--',sys3,'gx')

stepplot(AX,...) plots into the axes with handle AX.

stepplot(..., plotoptions) plots the step response with the options
specified in plotoptions. Type

help timeoptions

for more details.

Tips You can change the properties of your plot, for example the units. For
information on the ways to change properties of your plots, see “Ways
to Customize Plots”.

Examples Example 1

Use the plot handle to normalize the responses on a step plot.

sys = rss(3);
h = stepplot(sys);
% Normalize responses.
setoptions(h,'Normalize','on');

Example 2

Compare the step response of a parametric identified model to a
non-parametric (empirical) model, and view their 3-σ confidence
regions.

1-923

stepplot

load iddata1 z1

for parametric model

sys1 = ssest(z1,4);

non-parametric model

sys2 = impulseest(z1);
t = -1:0.1:5;
h = stepplot(sys1,sys2,t);
showConfidence(h, true, 3)

The non-parametric model sys2 shows higher uncertainty.

Example 3

Plot the step response of a nonlinear (Hammerstein-Wiener) model
using a starting offset of 2 and step amplitude of 0.5.

load twotankdata
z = iddata(y, u, 0.2, 'Name', 'Two tank system');
sys = nlhw(z, [1 5 3], pwlinear, poly1d);

step(sys, 60, stepDataOptions('InputOffset', 2, 'StepAmplitude', 0.5))

See Also getoptions | setoptions | showConfidence | step

1-924

strseq

Purpose Create sequence of indexed strings

Syntax strvec = strseq(STR,INDICES)

Description strvec = strseq(STR,INDICES) creates a sequence of indexed strings
in the string vector strvec by appending the integer values INDICES to
the string STR.

Note You can use strvec to aid in system interconnection. For an
example, see the sumblk reference page.

Examples Create a string vector by indexing the string 'e' at 1, 2, and 4.

strseq('e',[1 2 4])

This command returns the following result:

ans =

'e1'
'e2'
'e4'

See Also strcat | connect

1-925

struc

Purpose Generate model-order combinations for single-output ARX model
estimation

Syntax nn = struc(na,nb,nk)
nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu)

Description nn = struc(na,nb,nk) generates model-order combinations for
single-input ARX model estimation. na and nb are row vectors that
specify range of model orders. nk is a row vector that specifies range
of model delays. nn is a matrix that contains all combinations of the
orders and delays.

nn = struc(na,nb_1,...,nb_nu,nk_1,...,nk_nu) generates
model-order combinations for ARX model with nu input channels.

Tips • Use with arxstruc or ivstruc to compute loss functions for ARX
models, one for each model order combination returned by struc.

Examples Generate model-order combinations for single-input ARX model
estimation:

% na and nb vary between 1 and 2, nk varies between 4 and 5.
NN = struc(1:2,1:2,4:5);

Generate model-order combinations, and estimate multi-input ARX
model:

% Create estimation and validation data sets.
load co2data;
Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);

% Generate model-order combinations for na=2:4,
% nb=2:5 for the first input and 1 or 4 for the second input,
% nk=1:4 for the first input and 0 for the second input.

1-926

struc

NN = struc(2:4, 2:5, [1 4], 1:4, 0);

% Estimate an ARX model for each model order.
V = arxstruc(ze, zv, NN);

% Select a model order.
order=selstruc(V,0);

% Estimate an ARX model of selected order.
M=arx(ze,order);

See Also arxstruc | ivstruc | selstruc

Tutorials • “Estimating Model Orders Using an ARX Model Structure”

How To • “Preliminary Step – Estimating Model Orders and Input Delays”

1-927

tfdata

Purpose Access transfer function data

Syntax [num,den] = tfdata(sys)
[num,den,Ts] = tfdata(sys)
[num,den,Ts,sdnum,sdden]=tfdata(sys)
[num,den,Ts,...]=tfdata(sys,J1,...,Jn)

Description [num,den] = tfdata(sys) returns the numerator(s) and
denominator(s) of the transfer function for the TF, SS or ZPK model
(or LTI array of TF, SS or ZPK models) sys. For single LTI models,
the outputs num and den of tfdata are cell arrays with the following
characteristics:

• num and den have as many rows as outputs and as many columns as
inputs.

• The (i,j) entries num{i,j} and den{i,j} are row vectors specifying
the numerator and denominator coefficients of the transfer function
from input j to output i. These coefficients are ordered in descending
powers of s or z.

For arrays sys of LTI models, num and den are multidimensional cell
arrays with the same sizes as sys.

If sys is a state-space or zero-pole-gain model, it is first converted to
transfer function form using tf. For more information on the format of
transfer function model data, see the tf reference page.

For SISO transfer functions, the syntax

[num,den] = tfdata(sys,'v')

forces tfdata to return the numerator and denominator directly as row
vectors rather than as cell arrays (see example below).

[num,den,Ts] = tfdata(sys) also returns the sample time Ts.

[num,den,Ts,sdnum,sdden]=tfdata(sys) also returns the
uncertainties in the numerator and denominator coefficients of
identified system sys. sdnum{i,j}(k) is the 1 standard uncertainty

1-928

tfdata

in the value num{i,j}(k) and sdden{i,j}(k) is the 1 standard
uncertainty in the value den{i,j}(k). If sys does not contain
uncertainty information, sdnum and sdden are empty ([]).

[num,den,Ts,...]=tfdata(sys,J1,...,Jn) extracts the data for the
(J1,...,JN)entry in the model array sys.

You can access the remaining LTI properties of sys with get or by
direct referencing, for example,

sys.Ts
sys.variable

Examples Example 1

Given the SISO transfer function

h = tf([1 1],[1 2 5])

you can extract the numerator and denominator coefficients by typing

[num,den] = tfdata(h,'v')
num =

0 1 1

den =
1 2 5

This syntax returns two row vectors.

If you turn h into a MIMO transfer function by typing

H = [h ; tf(1,[1 1])]

the command

[num,den] = tfdata(H)

now returns two cell arrays with the numerator/denominator data for
each SISO entry. Use celldisp to visualize this data. Type

1-929

tfdata

celldisp(num)

This command returns the numerator vectors of the entries of H.

num{1} =
0 1 1

num{2} =
0 1

Similarly, for the denominators, type

celldisp(den)
den{1} =

1 2 5

den{2} =
1 1

Example 2

Extract the numerator, denominator and their standard deviations for
a 2-input, 1 output identified transfer function.

load iddata7

transfer function model

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

an equivalent process model

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

[num1, den1, ~, dnum1, dden1] = tfdata(sys1);
[num2, den2, ~, dnum2, dden2] = tfdata(sys2);

See Also get | ssdata | tf | zpkdata

1-930

tfest

Purpose Transfer function estimation

Syntax sys = tfest(data,np)
sys = tfest(data,np,nz)
sys = tfest(data,np,nz,iodelay)
sys = tfest(___ ,Name,Value)
sys = tfest(data,init_sys)
sys = tfest(___ ,opt)

Description sys = tfest(data,np) estimates a continuous-time transfer function,
sys, using time- or frequency-domain data, data, and contains np
poles. The number of zeros in the sys is max(np-1,0).

sys = tfest(data,np,nz) estimates a transfer function containing
nz zeros.

sys = tfest(data,np,nz,iodelay) estimates a transfer function with
transport delay for input/output pairs iodelay.

sys = tfest(___ ,Name,Value) uses additional options specified
by one or more Name,Value pair arguments. All input arguments
described for previous syntaxes also apply here.

sys = tfest(data,init_sys) uses the dynamic system init_sys to
configure the initial parameterization of sys.

sys = tfest(___ ,opt) specifies the estimation behavior using the
option set opt. All input arguments described for previous syntaxes
also apply here.

Input
Arguments

data

Estimation data.

For time domain estimation, data is an iddata object containing the
input and output signal values.

time-series models, which are models that contain no measured inputs,
cannot be estimated using tfest. Use ar, arx or armax for time-series
models instead.

1-931

tfest

For frequency domain estimation, data can be one of the following:

• Recorded frequency response data (frd or idfrd)

• iddata object with its properties specified as follows:

- InputData— Fourier transform of the input signal

- OutputData— Fourier transform of the output signal

- Domain — 'Frequency'

For multi-experiment data, the sample times and intersample behavior
of all the experiments must match.

np

Number of poles in the estimated transfer function.

np is a nonnegative number.

For systems that are multiple-input, or multiple-output, or both:

• To use the same number of poles for all the input/output pairs,
specify np as a scalar.

• To use different number of poles for the input/output pairs, specify
np as an ny-by-nu matrix. ny is the number of outputs, and nu is the
number of inputs.

nz

Number of zeros in the estimated transfer function.

nz is a nonnegative number.

For systems that are multiple-input, or multiple-output, or both:

• To use the same number of zeros for all the input/output pairs,
specify nz as a scalar.

• To use a different number of zeros for the input/output pairs, specify
nz as an ny-by-nu matrix. ny is the number of outputs, and nu is the
number of inputs.

1-932

tfest

For a continuous-time model, estimated using discrete-time data, set nz
<= np.

iodelay

Transport delay.

For continuous-time systems, specify transport delays in the time unit
stored in the TimeUnit property of data. For discrete-time systems,
specify transport delays as integers denoting delay of a multiple of the
sampling period Ts.

For a MIMO system with ny outputs and nu inputs, set iodelay to
an ny-by-nu array. Each entry of this array is a numerical value that
represents the transport delay for the corresponding input/output pair.
You can also set iodelay to a scalar value to apply the same delay
to all input/output pairs.

The specified values are treated as fixed delays.

iodelay must contain either nonnegative numbers or NaNs. Use NaN
in the iodelay matrix to denote unknown transport delays.

Use [] or 0 to indicate that there is no transport delay.

opt

Estimation options.

opt is an options set, created using tfestOptions, that specifies
estimation options including:

• Estimation objective

• Handling of initial conditions

• Numerical search method to be used in estimation

init_sys

Dynamic system that configures the initial parameterization of sys.

1-933

tfest

If init_sys is an idtf model, tfest uses the parameters and
constraints defined in init_sys as the initial guess for estimating sys.

Use the Structure property of init_sys to configure initial guesses
and constraints for the numerator, denominator and transport lag.

To specify an initial guess for, say, the numerator of init_sys, set
init_sys.Structure.num.Value to the initial guess.

To specify constraints for, say, the numerator of init_sys:

• Set init_sys.Structure.num.Minimum to the minimum numerator
coefficient values

• Set init_sys.Structure.num.Maximum to the maximum numerator
coefficient values

• Set init_sys.Structure.num.Free to indicate which numerator
coefficients are free for estimation

You can similarly specify the initial guess and constraints for the
denominator and transport lag.

If init_sys is not an idtfmodel, the software first converts init_sys
to a transfer function. tfest uses the parameters of the resulting model
as the initial guess for estimation.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’Ts’

Sampling time.

Use the following values for Ts:

• 0 — Continuous-time model.

1-934

tfest

• data.Ts — Discrete-time model. In this case, np and nz refer to
the number of roots of z^-1 for the numerator and denominator
polynomials.

Default: 0

’InputDelay’

Input delays. InputDelay is a numeric vector specifying a time delay for
each input channel. For continuous-time systems, specify input delays
in the time unit stored in the TimeUnit property. For discrete-time
systems, specify input delays in integer multiples of the sampling period
Ts. For example, InputDelay = 3 means a delay of three sampling
periods.

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector. Each
entry of this vector is a numerical value that represents the input delay
for the corresponding input channel. You can also set InputDelay to a
scalar value to apply the same delay to all channels.

Default: 0 for all input channels

’Feedthrough’

Feedthrough for discrete-time transfer function. Must be a Ny-by-Nu
logical matrix. Use a scalar to specify a common value across all
channels.

A discrete-time model with 2 poles and 3 zeros takes the following form:

Hz
b b z b z b z

a z a z

1

1 2 3

1 2
0 1 2 3

1 1 2
When the model has direct feedthrough, b0 is a free parameter whose
value is estimated along with the rest of the model parameters b1, b2,
b3, a1, a2. When the model has no feedthrough, b0 is fixed to zero.

Default: false (Ny,Nu)

1-935

tfest

Output
Arguments

sys

Identified transfer function.

sys is an idtf model that encapsulates the identified transfer function.

Examples Specify Number of Poles in Estimated Transfer Function

Load time domain system response data and use it to estimate a
transfer function for the system.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

z1 is an iddata object that contains time-domain, input-output data.

np specifies the number of poles in the estimated transfer function.

sys is an idtf model containing the estimated transfer function.

To see the numerator and denominator coefficients of the resulting
estimated model sys, enter:

sys.num
sys.den

Specify Number of Poles and Zeros in Estimated Transfer
Function

Load time domain system response data and use it to estimate a
transfer function for the system.

load iddata2 z2;
np = 2;
nz = 1;
sys = tfest(z2,np,nz);

z2 is an iddata object that contains time domain system response data.

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

1-936

tfest

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function Containing Known Transport
Delay

Load time domain system response data and use it to estimate a
transfer function for the system. Specify a known transport delay for
the transfer function.

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sys = tfest(z2,np,nz,iodelay);

z2 is an iddata object that contains time domain system response data.

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

iodelay specifies the transport delay for the estimated transfer
function as 0.2 seconds.

sys is an idtf model containing the estimated transfer function, with
ioDelay set to 0.2 seconds.

Estimate Transfer Function Containing Unknown Transport
Delay

Load time domain system response data and use it to estimate a
transfer function for the system. Specify an unknown transport delay
for the transfer function.

load iddata2 z2;
np = 2;
nz = 1;
iodelay = NaN;
sys = tfest(z2,np,nz,iodelay);

z2 is an iddata object that contains time domain system response data.

1-937

tfest

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

iodelay specifies the transport delay for the estimated transfer
function. iodelay = NaN denotes the transport delay as an unknown
parameter to be estimated.

sys is an idtf model containing the estimated transfer function, whose
ioDelay is estimated using data.

Estimate Discrete-Time Transfer Function With No
Feedthrough

Load time-domain system response data.

load iddata2 z2;

z2 is an iddata object that contains time domain system response data.

Estimate a transfer function with a sample time and known transport
delay

np = 2;
nz = 1;
iodelay = 2;
Ts = 0.1;
sysd = tfest(z2,np,nz,iodelay,'Ts',Ts);

By default, the model has no feedthrough.

Estimate Discrete-Time Transfer Function With Feedthrough

Estimate a discrete-time transfer function whose numerator polynomial
has a nonzero leading coefficient.

load iddata5 z5
np = 3;
nz = 1;
model = tfest(z5,np,nz,'ts',z5.ts,'Feedthrough',true);

1-938

tfest

Analyze the Origin of Delay in Measured Data

Compare two discrete-time models with and without feedthrough and
transport delay.

If there is a delay from the measured input to output, it can be
attributed to a lack of feedthrough or to a true transport delay. For
discrete-time models, absence of feedthrough corresponds to a lag of
1 sample between the input and output. Estimating a model with
Feedthrough = false and ioDelay = 0 thus produces a discrete-time
system that is equivalent to a system with Feedthrough = true and
ioDelay = 1. Both systems show the same time- and frequency-domain
responses, for example, on step and Bode plots. However, you get
different results if you reduce these models using balred or convert
them to their continuous-time representation. Therefore, you should
check if the observed delay should be attributed to transport delay or
to a lack of feedthrough.

Estimate a discrete-time model with no feedthrough.

load iddata1 z1
np = 2;
nz = 2;
model1 = tfest(z1, np, nz, 'Ts', z1.Ts);

model1 has a transport delay of 1 sample and its ioDelay property is
0. Its numerator polynomial begins with z-1.

Estimate another discrete-time model with feedthrough and 1 sample
input-output delay.

model2 = tfest(z1, np, nz-1, 1, 'Ts', z1.Ts, 'Feedthrough', true);

Compare the Bode response of the models.

bode(model1,model2);

1-939

tfest

The equations for model1 and model2 are equivalent but the transport
delay of model2 has been absorbed into the numerator of model1.

Convert the models to continuous time, and compare their Bode
responses.

bode(d2c(model1),d2c(model2));

1-940

tfest

As the plot shows, the Bode responses of the two models do not match
when you convert them to continuous time.

Estimate MISO Discrete-Time Transfer Function with
Feedthrough and Delay Specifications for Individual
Channels

Estimate a 2-input, 1-output discrete-time transfer function with a
delay of 2 samples on first input and zero seconds on the second input.
Both inputs have no feedthrough.

Split data into estimation and validation data sets.

load iddata7 z7
ze = z7(1:300);
zv = z7(200:400);

Estimate a 2-input, 1-output transfer function with 2 poles and 1 zero
for each input-to-output transfer function.

1-941

tfest

Lag = [2; 0];
Ft = [false, false];
model = tfest(ze, 2, 1, 'Ts', z7.Ts, 'Feedthrough', Ft, 'InputDelay', Lag

Choice of Feedthrough dictates whether the leading numerator
coefficient is zero (no feedthrough) or not (nonzero feedthrough). Delays
are expressed separately using InputDelay or ioDelay property. This
example uses InputDelay to express the delays.

Validate the estimated model. Exclude the data outliers for validation.

I = 1:201; I(114:118) = [];
opt = compareOptions('Samples',I);
compare(zv, model, opt)

Specify Estimation Options

Create the options set for tfest.

opt = tfestOptions('InitMethod', 'n4sid', 'Display', 'on', 'SearchMethod'

1-942

tfest

opt specifies that the initialization method as 'n4sid', and the search
method as 'lsqnonlin'. It also specifies that the loss-function values
for each iteration be shown.

Load time domain system response data and use it to estimate a transfer
function for the system. Specify the estimation options using opt.

load iddata2 z2;
np = 2;
nz = 1;
iodelay = 0.2;
sysc = tfest(z2,np,nz,iodelay,opt);

z2 is an iddata object that contains time domain system response data.

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

iodelay specifies the transport delay for the estimated transfer
function as 0.2 seconds.

opt specifies the estimation options.

sys is an idtf model containing the estimated transfer function.

Specify Model Properties of the Estimated Transfer Function

Load time domain system response data, and use it to estimate a
transfer function for the system. Specify the input delay for the
estimated transfer function.

load iddata2 z2;
np = 2;
nz = 1;
input_delay = 0.2;
sys = tfest(z2,np,nz,'InputDelay',input_delay)

z2 is an iddata object that contains time domain system response data.

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

1-943

tfest

input_delay specifies the input delay for the estimated transfer
function as 0.2 seconds.

sys is an idtf model containing the estimated transfer function with
an input delay of 0.2 seconds.

Convert Frequency Response Data (FRD) into Transfer
Function

Note This example requires a Control System Toolbox license.

Obtain frequency response data.

For example, use bode to obtain the magnitude and phase response
data for the following system:

H s
s

s s s
()

.

0 2

2 13 2

Use 100 frequency points, ranging from 0.1 rad/s to 10 rad/s, to obtain
the frequency response data. Use frd to create a frequency response
data object.

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[1 2 1 1]),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

Estimate a transfer function using data.

np = 3;
nz = 1;
sys = tfest(data,np,nz);

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

sys is an idtf model containing the estimated transfer function.

1-944

tfest

Estimate Transfer Function with Transport Delay to Fit Given
Frequency Response Data

Estimate a transfer function to fit a given frequency response data
(FRD) containing additional phase roll off induced by input delay.

Note This example requires a Control System Toolbox license.

Obtain frequency response data.

For this example, use bode to obtain the magnitude and phase response
data for the following system:

H s e
s

s s s
s()

..

 5

3 2
0 2

2 1
Use 100 frequency points, ranging from 0.1 rad/s to 10 rad/s, to obtain
the frequency response data. Use frd to create a frequency response
data object.

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[1 2 1 1],'InputDelay',.5),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

data is an iddata object that contains frequency response data for the
described system.

Estimate a transfer function using data. Specify an unknown transport
delay for the estimated transfer function.

np = 3;
nz = 1;
iodelay = NaN;
sys = tfest(data,np,nz,iodelay)

np and nz specify the number of poles and zeros in the estimated
transfer function, respectively.

1-945

tfest

iodelay specifies an unknown transport delay for the estimated
transfer function.

sys is an idtf model containing the estimated transfer function.

Specify Estimated Transfer Function Model Structure and
Coefficient Constraints

Load time domain data.

load iddata1 z1;
z1.y = cumsum(z1.y);

cumsum integrates the output data of z1. The estimated transfer
function should therefore contain an integrator.

Create a transfer function model with the expected structure.

init_sys = idtf([100 1500],[1 10 10 0]);

int_sys is an idtf model with three poles and one zero. The
denominator coefficient for the s^0 term is zero. Therefore, int_sys
contains an integrator.

Specify constraints on the numerator and denominator coefficients of
the transfer function model. To do so, configure fields in the Structure
property:

init_sys.Structure.num.Minimum = eps;
init_sys.Structure.den.Minimum = eps;
init_sys.Structure.den.Free(end) = false;

The constraints specify that the numerator and denominator coefficients
are nonnegative. Additionally, the last element of the denominator
coefficients (associated with the s^0 term) is not an estimable
parameter. This constraint forces one of the estimated poles to be at
s = 0.

Create an estimation option set that specifies using the
Levenberg–Marquardt search method.

1-946

tfest

opt = tfestOptions('SearchMethod', 'lm');

Estimate a transfer function for z1 using init_sys and the estimation
option set.

sys = tfest(z1,init_sys,opt);

tfest uses the coefficients of init_sys to initialize the estimation of
sys. Additionally, the estimation is constrained by the constraints
you specify in the Structure property of init_sys. The resulting
idtf model sys contains the parameter values that result from the
estimation.

Estimate Transfer Function with Known Transport Delays
for Multiple Inputs

Load time domain system response data.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

data is an iddata object and has a sample rate of 0.5 seconds.

Specify the search method as gna. Also specify the maximum search
iterations and input/output offsets.

opt = tfestOptions('SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

opt is an estimation option set that specifies the search method as gna,
with a maximum of 50 iterations. opt also specifies the input offset
and the output offset.

Estimate a transfer function using the measured data and the
estimation option set. Specify the transport delays from the inputs to
the output.

1-947

tfest

np = 3;
nz = 1;
iodelay = [2 5];
sys = tfest(data,np,nz,iodelay,opt);

iodelay specifies the input to output delay from the first and second
inputs to the output as 2 seconds and 5 seconds, respectively.

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function with Known and Unknown
Transport Delays

Load time domain system response data and use it to estimate a
transfer function for the system. Specify the known and unknown
transport delays.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);

data is an iddata object and has a sample rate of 0.5 seconds.

Specify the search method as gna. Also specify the maximum search
iterations and input/output offsets.

opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;

opt is an estimation option set that specifies the search method as gna,
with a maximum of 50 iterations. opt also specifies the input/output
offsets.

Estimate the transfer function. Specify the unknown and known
transport delays.

np = 3;

1-948

tfest

nz = 1;
iodelay = [2 nan];
sys = tfest(data,np,nz,iodelay,opt)

iodelay specifies the transport delay from the first input to the output
as 2 seconds. Using NaN specifies the transport delay from the second
input to the output as unknown.

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function with Unknown, Constrained
Transport Delays

Create a transfer function model with the expected numerator and
denominator structure and delay constraints.

For this example, the experiment data consists of two inputs and one
output. Both transport delays are unknown and have an identical upper
bound. Additionally, the transfer functions from both inputs to the
output are identical in structure.

init_sys = idtf(NaN(1,2),[1, NaN(1,3)],'ioDelay',NaN);
init_sys.Structure(1).ioDelay.Free = true;
init_sys.Structure(1).ioDelay.Maximum = 7;

init_sys is an idtf model describing the structure of the transfer
function from one input to the output. The transfer function consists of
one zero, three poles and a transport delay. The use of NaN indicates
unknown coefficients.

init_sys.Structure(1).ioDelay.Free = true indicates that the
transport delay is not fixed.

init_sys.Structure(1).ioDelay.Maximum = 7 sets the upper bound
for the transport delay to 7 seconds.

init_sys = [init_sys, init_sys];

init_sys now contains the transfer function from both inputs to the
output.

1-949

tfest

Load time domain system response data and use it to estimate a
transfer function.

load co2data;
Ts = 0.5;
data = iddata(Output_exp1,Input_exp1,Ts);
opt = tfestOptions('Display','on','SearchMethod','gna');
opt.InputOffset = [170; 50];
opt.OutputOffset = mean(data.y(1:75));
opt.SearchOption.MaxIter = 50;
sys = tfest(data,init_sys,opt)

data is an iddata object and has a sample rate of 0.5 seconds.

opt is an estimation option set that specifies the search method as gna,
with a maximum of 50 iterations. opt also specifies the input offset
and the output offset.

sys is an idtf model containing the estimated transfer function.

Analyze the estimation result by comparison.

opt2 = compareOptions;
opt2.InputOffset = opt.InputOffset;
opt2.OutputOffset = opt.OutputOffset;
compare(data, sys, opt2)

Estimate Transfer Function Containing Different Number of
Poles for Input/Output Pairs

Estimate a multiple-input, single-output transfer function containing
different number of poles for input/output pairs for given data.

Note This example requires a Control System Toolbox license.

Obtain frequency response data.

1-950

tfest

For example, use frd to frequency response data model for the following
system:

G
e

s

s s s

e
s s s s

s

s

4
3 2

0 6
4 3 2

2

2 4 5
5

2
.

Use 100 frequency points, ranging from 0.01 rad/s to 100 rad/s, to obtain
the frequency response data.

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 0]},0,'ioDelay',[4 .6]);
data = frd(G,logspace(-2,2,100));

data is an frd object containing the continuous-time frequency response
for G.

Estimate a transfer function for data.

np = [3 4];
nz = [1 0];
iodelay = [4 .6];
sys = tfest(data,np,nz,iodelay);

np specifies the number of poles in the estimated transfer function. The
first element of np indicates that the transfer function from the first
input to the output contains 3 poles. Similarly, the second element of
np indicates that the transfer function from the second input to the
output contains 4 poles.

nz specifies the number of zeros in the estimated transfer function. The
first element of nz indicates that the transfer function from the first
input to the output contains 1 zero. Similarly, the second element of
np indicates that the transfer function from the second input to the
output does not contain any zeros.

iodelay specifies the transport delay from the first input to the output
as 4 seconds. The transport delay from the second input to the output
is specified as 0.6 seconds.

1-951

tfest

sys is an idtf model containing the estimated transfer function.

Estimate Transfer Function for Unstable System

Estimate a transfer function describing an unstable system for given
data.

Note This example requires a Control System Toolbox license.

Obtain frequency response data.

For example, use frd to frequency response data model for the following
system:

G

s

s s s

s s s s

2

2 4 5
5

2 1

3 2

4 3 2

Use 100 frequency points, ranging from 0.01 rad/s to 100 rad/s, to obtain
the frequency response data.

G = tf({[1 2],[5]},{[1 2 4 5],[1 2 1 1 1]});
data = frd(G,logspace(-2,2,100));

data is an frd object containing the continuous-time frequency response
for G.

Create estimation options set.

opt = tfestOptions('Focus','prediction');

Estimate a transfer function for data, using the options set opt.

np = [3 4];
nz = [1 0];
sys = tfest(data,np,nz,opt);

1-952

tfest

np specifies the number of poles in the estimated transfer function. The
first element of np indicates that the transfer function from the first
input to the output contains 3 poles. Similarly, the second element of
np indicates that the transfer function from the second input to the
output contains 4 poles.

nz specifies the number of zeros in the estimated transfer function. The
first element of nz indicates that the transfer function from the first
input to the output contains 1 zero. Similarly, the second element of
np indicates that the transfer function from the second input to the
output does not contain any zeros.

opt specifies the estimation options for estimating the transfer function.

sys is an idtf model containing the estimated transfer function.

Algorithms tfest uses the prediction error minimization (PEM) approach to
estimate transfer function coefficients. In general, the estimating
algorithm performs two major tasks:

1 Initializing the estimable parameters.

2 Updating the estimable parameters.

The details of the algorithms used to perform these tasks vary
depending on a variety of factors, including the sampling of the
estimated model and the estimation data.

Continuous-Time Transfer Function Estimation Using
Time-Domain Data
Parameter Initialization
The estimation algorithm initializes the estimable parameters using
the method specified by the InitMethod estimation option. The default
method is the Instrument Variable (IV) method.

The State-Variable Filters (SVF) approach and the Generalized
Poisson Moment Functions (GPMF) approach to continuous-time

1-953

tfest

parameter estimation use prefiltered data [1] [2]. The constant
1

in

[1] and [2] corresponds to the initialization option (InitOption) field
FilterTimeConstant. IV is the simplified refined IV method and is
called SRIVC in [1] and [2]. This method has a prefilter that is the
denominator of the current model, initialized with SVF. This prefilter
is iterated up to MaxIter times, until the model change is less than
Tolerance. MaxIter and Tolerance are options that you can specify
using the InitOption structure. The 'n4sid' initialization option
estimates a discrete-time model, using the N4SID estimation algorithm,
that it transforms to continuous-time using d2c.

You use tfestOptions to create the option set used to estimate a
transfer function.

Parameter Update
The initialized parameters are updated using a nonlinear least-squares
search method, specified by the SearchMethod estimation option. The
objective of the search method is to minimize the weighted prediction
error norm.

Discrete-Time Transfer Function Estimation

For discrete-time data, tfest uses the same algorithm as oe to
determine the numerator and denominator polynomial coefficients. In
this algorithm, the initialization is performed using arx, followed by
nonlinear least-squares search based updates to minimize a weighted
prediction error norm.

Continuous-Time Transfer Function Estimation Using
Frequency-Domain Data

For continuous-time data and fixed delays, the Output-Error algorithm
is used. For continuous-time data and free delays, or for discrete-time
data, the state-space estimation algorithm is used. In this algorithm,
the model coefficients are initialized using the N4SID estimation
method. This initialization is followed by nonlinear least-squares search
based updates to minimize a weighted prediction error norm.

1-954

tfest

Delay Estimation

• When delay values are specified as NaN, they are estimated
separate from the model’s numerator and denominator coefficients,
using delayest. The delay values thus determined are treated
as fixed values during the iterative update of the model using a
nonlinear least-squares search method. Thus, the delay values are
not iteratively updated. The only exception is the estimation of
continuous-time models using continuous-time data.

• For an initial model, init_sys, with:

- init_sys.Structure.ioDelay.Value specified as finite values

- init_sys.Structure.ioDelay.Free specified as true

the transport delay values are updated during estimation only if you
are using continuous-time, frequency-domain data and init_sys.Ts
is zero. In all other cases, the initial delay values are left unchanged.

Estimation of delays is often a difficult problem. You should assess the
presence and the value of a delay. To do so, use physical insight of the
process being modeled and functions such as arxstruc, delayest, and
impulseest. For an example of determining input delay, see Model
Structure Selection: Determining Model Order and Input Delay.

References [1] Garnier, H., M. Mensler, and A. Richard. “Continuous-time Model
Identification From Sampled Data: Implementation Issues and
Performance Evaluation” International Journal of Control, 2003, Vol.
76, Issue 13, pp 1337–1357.

[2] Ljung, L. “Experiments With Identification of Continuous-Time
Models.” Proceedings of the 15th IFAC Symposium on System
Identification. 2009.

See Also tfestOptions | idtf | ssest | procest | ar | arx | oe | bj
| polyest | greyest

1-955

tfest

Related
Examples

• “How to Estimate Transfer Function Models at the Command Line”

Concepts • “What are Transfer Function Models?”

1-956

tfestOptions

Purpose Options set for tfest

Syntax opt = tfestOptions
opt = tfestOptions(Name,Value)

Description opt = tfestOptions creates the default options set for tfest.

opt = tfestOptions(Name,Value) creates an option set with the
options specified by one or more Name,Value pair arguments.

Input
Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’InitMethod’

Algorithm used to initialize the values of the numerator and
denominator of the output of tfest.

Applies only for estimation of continuous-time transfer functions using
time domain data.

InitMethod is a string that requires the following values:

• 'iv' — Instrument Variable approach.

• 'svf' — State Variable Filters approach.

• 'gpmf'— Generalized Poisson Moment Functions approach.

• 'n4sid'— Subspace state-space estimation approach.

• 'all' — Combination of all of the preceding approaches. The
software tries all these methods and selects the method that yields
the smallest value of prediction error norm.

Default: 'iv'

1-957

tfestOptions

’InitOption’

Options associated with the method used to initialize the values of the
numerator and denominator of the output of tfest.

InitOption is a structure with the following fields:

• N4Weight — Calculates the weighting matrices used in the
singular-value decomposition step of the 'n4sid' algorithm.
Applicable when InitMethod is 'n4sid'.

N4Weight is a string that requires the following values:

- 'MOESP'— Uses the MOESP algorithm by Verhaegen.

- 'CVA'—Uses the canonical variable algorithm (CVA) by Larimore.

- 'auto' — The software automatically determines if the
MOESP algorithm or the CVA algorithm should be used in the
singular-value decomposition step.

Default: `auto'

• N4Horizon — Determines the forward and backward prediction
horizons used by the 'n4sid' algorithm. Applicable when
InitMethod is 'n4sid'.

N4Horizon is a row vector with three elements: [r sy su], where
r is the maximum forward prediction horizon. The algorithm uses
up to r step-ahead predictors. sy is the number of past outputs, and
su is the number of past inputs that are used for the predictions.
See pages 209 and 210 in [1] for more information. These numbers
can have a substantial influence on the quality of the resulting
model, and there are no simple rules for choosing them. Making
'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon'
is tried, and the value that gives the best (prediction) fit to data is
selected. k is the number of guesses of [r sy su] combinations.

If N4Horizon = 'auto', the software uses an Akaike Information
Criterion (AIC) for the selection of sy and su.

Default: 'auto'

1-958

tfestOptions

• FilterTimeConstant — Time constant of the differentiating filter
used by the iv, svf, and gpmf initialization methods (see [4] and [5]).

FilterTimeConstant specifies the cutoff frequency of the
differentiating filter, Fcutoff, as:

F
Tcutoff

s

FilterTimeConstant

Ts is the sampling time of the estimation data.

Specify FilterTimeConstant as a positive number, typically less
than 1. A good value of FilterTimeConstant is the ratio of Ts to the
dominating time constant of the system.

Default: 0.1

• MaxIter — Maximum number of iterations. Applicable when
InitMethod is 'iv'.

Default: 30

• Tolerance— Convergence tolerance. Applicable when InitMethod
is 'iv'.

Default: 0.01

’InitialCondition’

Specifies how initial conditions are handled during estimation.

• 'zero'— All initial conditions are taken as zero.

• 'estimate' — The necessary initial conditions are treated as
estimation parameters.

• 'backcast' — The necessary initial conditions are estimated by a
backcasting (backward filtering) process, described in [2].

• 'auto'— An automatic choice among the preceding options is made,
guided by the data.

Default: 'auto'

1-959

tfestOptions

’Focus’

Defines how the errors e between the measured and the modeled
outputs are weighed at specific frequencies during the minimization of
the prediction error.

Higher weighting at specific frequencies emphasizes the requirement
for a good fit at these frequencies.

Focus requires one of the following values:

• 'simulation'— Estimates the model using the frequency weighting
of the transfer function that is given by the input spectrum.
Typically, this method favors the frequency range where the input
spectrum has the most power.

• 'prediction' — Same as 'simulation', except that this option
does not enforce the stability of the resulting model.

• Passbands — Row vector or matrix containing frequency values that
define desired passbands. For example:

[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]

where wl and wh represent upper and lower limits of a passband.
For a matrix with several rows defining frequency passbands, the
algorithm uses union of frequency ranges to define the estimation
passband.

• SISO filter — Enter any SISO linear filter in any of the following
ways:

- A single-input-single-output (SISO) linear system.

- The {A,B,C,D} format, which specifies the state-space matrices
of the filter.

- The {numerator, denominator} format, which specifies the
numerator and denominator of the filter transfer function

This option calculates the weighting function as a product of the
filter and the input spectrum to estimate the transfer function. To

1-960

tfestOptions

obtain a good model fit for a specific frequency range, you must
choose the filter with a passband in this range. The estimation
result is the same if you first prefilter the data using idfilt.

• Weighting vector — For frequency-domain data only, enter a column
vector of weights for 'Focus'. This vector must have the same size
as length of the frequency vector of the data set, Data.Frequency.
Each input and output response in the data is multiplied by the
corresponding weight at that frequency.

Default: 'simulation'

’EstCovar’

Controls whether parameter covariance data is generated or not.

If EstCovar is true, then use getcov to fetch the covariance matrix
from the estimated model.

Default: true

’Display’

Specifies whether estimation progress should be displayed.

Display requires one of the following strings:

• 'on' — Information on model structure and estimation results are
displayed in a progress-viewer window

• 'off'— No progress or results information is displayed

Default: 'off'

’InputOffset’

Removes offset from time domain input data during estimation.

Specify as a column vector of length Nu, where Nu is the number of
inputs.

Use [] to indicate no offset.

1-961

tfestOptions

For multiexperiment data, specify InputOffset as a Nu-by-Ne matrix.
Nu is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the
corresponding input data.

Default: []

’OutputOffset’

Removes offset from time domain output data during estimation.

Specify as a column vector of length Ny, where Ny is the number of
outputs.

Use [] to indicate no offset.

For multiexperiment data, specify OutputOffset as a Ny-by-Ne
matrix. Ny is the number of outputs, and Ne is the number of
experiments.

Each entry specified by OutputOffset is subtracted from the
corresponding output data.

Default: []

’SearchMethod’

Search method used for iterative parameter estimation.

SearchMethod requires one of the following values:

• 'gn'— The subspace Gauss-Newton direction. Singular values of the
Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J)
are discarded when computing the search direction. J is the Jacobian
matrix. The Hessian matrix is approximated by JTJ. If there is
no improvement in this direction, the function tries the gradient
direction.

• 'gna'— An adaptive version of subspace Gauss-Newton approach,
suggested by Wills and Ninness [3]. Eigenvalues less than
gamma*max(sv) of the Hessian are ignored, where sv are the singular

1-962

tfestOptions

values of the Hessian. The Gauss-Newton direction is computed in
the remaining subspace. gamma has the initial value InitGnaTol
(see Advanced for more information). gamma is increased by the
factor LMStep each time the search fails to find a lower value of the
criterion in less than 5 bisections. gamma is decreased by the factor
2*LMStep each time a search is successful without any bisections.

• 'lm' — Uses the Levenberg-Marquardt method, so that the next
parameter value is -pinv(H+d*I)*grad from the previous one, where
H is the Hessian, I is the identity matrix, and grad is the gradient.
d is a number that is increased until a lower value of the criterion
is found.

• 'lsqnonlin' — Uses lsqnonlin optimizer from Optimization
Toolbox software. This search method can only handle the Trace
criterion.

• 'grad'— The steepest descent gradient search method.

• 'auto' — A choice among the preceding options is made in the
algorithm. The descent direction is calculated using 'gn', 'gna',
'lm', and 'grad' successively, at each iteration until a sufficient
reduction in error is achieved.

Default: 'auto'

’SearchOption’

Options set for the search algorithm.

1-963

tfestOptions

SearchOption structure when SearchMethod is specified as ’gn’,
’gna’, ’lm’, ’grad’, or ’auto’

Field
Name

Description

ToleranceMinimum percentage difference (divided by 100) between
the current value of the loss function and its expected
improvement after the next iteration. When the percentage of
expected improvement is less than Tolerance, the iterations
stop. The estimate of the expected loss-function improvement
at the next iteration is based on the Gauss-Newton vector
computed for the current parameter value.

Default: 0.01

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as Tolerance.

Setting MaxIter = 0 returns the result of the start-up
procedure.

Use sys.Report.Termination.Iterations to get the actual
number of iterations during an estimation, where sys is an
idtf model.

Default: 20

AdvancedAdvanced search settings.

Specified as a structure with the following fields:

Field
Name

Description

GnPinvConstSingular values of the Jacobian
matrix that are smaller than
GnPinvConst*max(size(J)*norm(J)*eps
are discarded when computing the search
direction. Applicable when SearchMethod is
'gn'.

GnPinvConst must be a positive, real value.

Default: 10000

InitGnaTolInitial value of gamma. Applicable when
SearchMethod is 'gna'.

Default: 0.0001

1-964

tfestOptions

Field
Name

Description

LMStartValueStarting value of search-direction length d in the
Levenberg-Marquardt method. Applicable when
SearchMethod is 'lm'.

Default: 0.001

LMStep Size of the Levenberg-Marquardt step. The
next value of the search-direction length d in
the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when
SearchMethod is 'lm'.

Default: 2

MaxBisectionsMaximum number of bisections used by the line
search along the search direction.

Default: 25

MaxFunEvalsIterations stop if the number of calls to the model
file exceeds this value.

MaxFunEvals must be a positive, integer value.

Default: Inf

MinParChangeSmallest parameter update allowed per iteration.

MinParChange must be a positive, real value.

Default: 0

RelImprovementIterations stop if the relative improvement of the
criterion function is less than RelImprovement.

RelImprovement must be a positive, integer
value.

Default: 0

StepReductionSuggested parameter update is reduced by
the factor StepReduction after each try. This

1-965

tfestOptions

Field
Name

Description

reduction continues until either MaxBisections
tries are completed or a lower value of the
criterion function is obtained.

StepReduction must be a positive, real value
that is greater than 1.

Default: 2

SearchOption structure when SearchMethod is specified as
‘lsqnonlin’

Field
Name

Description

TolFun Termination tolerance on the loss function that the software
minimizes to determine the estimated parameter values.

The value of TolFun is the same as that of
sys.SearchOption.Advanced.TolFun.

Default: 1e-5

TolX Termination tolerance on the estimated parameter values.

The value of TolX is the same as that of
sys.SearchOption.Advanced.TolX.

Default: 1e-6

MaxIterMaximum number of iterations during loss-function
minimization. The iterations stop when MaxIter is reached
or another stopping criterion is satisfied, such as TolFun etc.

The value of MaxIter is the same as that of
sys.SearchOption.Advanced.MaxIter.

Default: 20

AdvancedOptions set for lsqnonlin.

For more information, see “Optimization Options”.

Use optimset('lsqnonlin') to create an options set for
lsqnonlin, and then modify it to specify its various options.

’Advanced’

Advanced is a structure with the following fields:

• ErrorThreshold — Specifies when to adjust the weight of large
errors from quadratic to linear.

1-966

tfestOptions

Errors larger than ErrorThreshold times the estimated standard
deviation have a linear weight in the criteria. The standard deviation
is estimated robustly as the median of the absolute deviations from
the median and divided by 0.7. See the section about choosing
a robust norm in the chapter “Computing the Estimate” of [1].
ErrorThreshold = 0 disables robustification and leads to a purely
quadratic criterion. When estimating with frequency-domain data,
the software sets ErrorThreshold to zero. For time-domain data
that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

• MaxSize— Specifies the maximum number of elements in a segment
when input-output data is split into segments.

MaxSize must be a positive, integer value.

Default: 250000

• StabilityThreshold— Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

- s— Specifies the location of the right-most pole to test the stability
of continuous-time models. A model is considered stable when its
right-most pole is to the left of s.

Default: 0

- z— Specifies the maximum distance of all poles from the origin to
test stability of discrete-time models. A model is considered stable
if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

• AutoInitThreshold — Specifies when to automatically estimate
the initial conditions.

The initial condition is estimated when

y

y

y

y
p z meas

p e meas

,

,

 AutoInitThreshold

1-967

tfestOptions

- ymeas is the measured output.

- yp,z is the predicted output of a model estimated using zero initial
states.

- yp,e is the predicted output of a model estimated using estimated
initial states.

Applicable when InitialCondition is 'auto'.

Default: 1.05

’OutputWeight’

Specifies criterion used during minimization.

OutputWeight can have the following values:

• 'noise'— Minimize det(’*)E E , where E represents the prediction
error. This choice is optimal in a statistical sense and leads to the
maximum likelihood estimates in case nothing is known about the
variance of the noise. This option uses the inverse of the estimated
noise variance as the weighting function.

• Positive semidefinite symmetric matrix (W) — Minimize the trace
of the weighted prediction error matrix trace(E'*E*W). E is the
matrix of prediction errors, with one column for each output, and
W is the positive semidefinite symmetric matrix of size equal to
the number of outputs. Use W to specify the relative importance of
outputs in multiple-input, multiple-output models or the reliability of
corresponding data.

This option is relevant only for multi-input, multi-output models.

• []— The software chooses between the 'noise' or using the identity
matrix for W.

Output
Arguments

opt

Option set containing the specified options for tfest.

1-968

tfestOptions

Examples Create Default Options Set for Transfer Function Estimation

opt = tfestOptions;

Specify Options for Transfer Function Estimation

Create an options set for tfest using the 'n4sid' initialization
algorithm and set the Display to 'on'.

opt = tfestOptions('InitMethod','n4sid','Display','on');

Alternatively, use dot notation to set the values of opt.

opt = tfestOptions;
opt.InitMethod = 'n4sid';
opt.Display = 'on';

References [1] Ljung, L. System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall PTR, 1999.

[2] Knudsen, T. "New method for estimating ARMAX models," In
Proceedings of 10th IFAC Symposium on System Identification,
SYSID’94, Copenhagen, Denmark, July 1994, Vol. 2, pp. 611–617.

[3] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based
Search for Multivariable System Estimates.” Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 3–8, 2005. Oxford,
UK: Elsevier Ltd., 2005.

[4] Garnier, H., M. Mensler, and A. Richard. “Continuous-time Model
Identification From Sampled Data: Implementation Issues and
Performance Evaluation” International Journal of Control, 2003, Vol.
76, Issue 13, pp 1337–1357.

[5] Ljung, L. “Experiments With Identification of Continuous-Time
Models.” Proceedings of the 15th IFAC Symposium on System
Identification. 2009.

See Also tfest

1-969

timeoptions

Purpose Create list of time plot options

Syntax P = timeoptions
P = timeoptions('cstprefs')

Description P = timeoptions returns a list of available options for time plots with
default values set. You can use these options to customize the time
value plot appearance from the command line.

P = timeoptions('cstprefs') initializes the plot options you selected
in the Control System Toolbox Preferences Editor. For more information
about the editor, see “Toolbox Preferences Editor” in the User’s Guide
documentation.

This table summarizes the available time plot options.

Option Description

Title, XLabel, YLabel Label text and style

TickLabel Tick label style

Grid Show or hide the grid
Specified as one of the following
strings: 'off' | 'on'
Default: 'off'

XlimMode, YlimMode Limit modes

Xlim, Ylim Axes limits

IOGrouping Grouping of input-output pairs
Specified as one of the
following strings: 'none'
|'inputs'|'output'|'all'
Default: 'none'

InputLabels, OutputLabels Input and output label styles

InputVisible, OutputVisible Visibility of input and output
channels

1-970

timeoptions

Option Description

Normalize Normalize responses
Specified as one of the following
strings: 'on' |'off'
Default: 'off'

SettleTimeThreshold Settling time threshold

RiseTimeLimits Rise time limits

TimeUnits Time units, specified as one of the
following strings:
• 'nanoseconds'

• 'microseconds'

• 'milliseconds'

• 'seconds'

• 'minutes'

• 'hours'

• 'days'

• 'weeks'

• 'months'

• 'years'

Default: 'seconds'

You can also specify 'auto' which
uses time units specified in the
TimeUnit property of the input
system. For multiple systems with
different time units, the units of
the first system is used.

1-971

timeoptions

Examples In this example, enable the normalized response option before creating
a plot.

P = timeoptions;

% Set normalize response to on in options

P.Normalize = 'on';

% Create plot with the options specified by P

h = stepplot(tf(10,[1,1]),tf(5,[1,5]),P);

The following step plot is created with the responses normalized.

See Also getoptions | impulseplot | initialplot | lsimplot | setoptions
| stepplot

1-972

totaldelay

Purpose Total combined I/O delays for LTI model

Syntax td = totaldelay(sys)

Description td = totaldelay(sys) returns the total combined I/O delays for
an LTI model sys. The matrix td combines contributions from the
InputDelay, OutputDelay, and ioDelayMatrix properties.

Delays are expressed in seconds for continuous-time models, and as
integer multiples of the sample period for discrete-time models. To
obtain the delay times in seconds, multiply td by the sample time
sys.Ts.

Examples sys = tf(1,[1 0]); % TF of 1/s
sys.inputd = 2; % 2 sec input delay
sys.outputd = 1.5; % 1.5 sec output delay
td = totaldelay(sys)
td =

3.5000

The resulting I/O map is

e
s

e e
s

s s s− − −× =2 1 5 3 51 1. .

This is equivalent to assigning an I/O delay of 3.5 seconds to the original
model sys.

See Also absorbDelay | hasdelay

1-973

translatecov

Purpose Translate parameter covariance across model operations

Syntax sys_new = translatecov(fcn,sys)
sys_new = translatecov(fcn,sys1,sys2,...sysn)

Description sys_new = translatecov(fcn,sys) translates parameter covariance
in the model sys during the transformation operation specified in fcn.
Parameter covariance is computed by applying Gauss Approximation
formula on the parameter covariance of sys.

sys_new = translatecov(fcn,sys1,sys2,...sysn) translates
parameter covariance in the multiple models sys1,sys2,...sysn.
The parameters of the systems are assumed to be uncorrelated.

Tips • translatecov transforms the model in the same way that
directly calling the transformation command does. For example,
translatecov(@(x)d2c(x),sys) produces a system that has the
same coefficients as d2c(sys). The resulting model also has the
parameter covariance of sys. Using d2c(sys) directly does not
translate the parameter covariance.

• If you obtained sys through estimation and have access to the
estimation data, you can use zero-iteration update to recompute the
parameter covariance. For example:

load iddata1
m = ssest(z1,4);
opt = ssestOptions
opt.SearchOption.MaxIter = 0;
m_new = ssest(z1,m2,opt)

You cannot run a zero-iteration update in the following cases:

- If MaxIter option, which depends on the SearchMethod option, is
not available.

- For some model and data types. For example, a continuous-time
idpoly model using time-domain data.

1-974

translatecov

Input
Arguments

fcn

Function for a model transformation operation, specified as a function
handle. The function handle describes the transformation such that:

• For single-model operations, sys_new = fcn(sys). Examples of
single-model operations are model-type conversion (idpoly, idss,
...) and sample time conversion (c2d, ...). For example, fcn =
@(x)c2d(x,Ts), or fcn = @idpoly.

• For multi-model operations, sys_new = fcn(sys1,sys2,..).
Examples of multimodel operations are merging and concatenation.
For example, fcn = @(x,y)[x,y] such that fcn(sys1,sys2)
performs horizontal concatenation of the models sys1 and sys2.

sys

Linear model, specified as one of the following model types:

• idtf

• idproc

• idss

• idpoly

• idgrey

The model must contain parameter covariance information
(getcov(sys) is nonempty).

sys1,sys2,...sysn

Multiple linear models. Models must be of the same type.

Output
Arguments

sys_new

Model resulting from a transformation operation and includes
parameter covariance.

1-975

translatecov

Examples Translate Parameter Covariance During Model Conversion

Convert an estimated transfer function model into state-space model
while also translating the estimated parameter covariance.

Estimate a transfer function model.

load iddata1
sys1 = tfest(z1,2);

Convert the estimated model to state-space form while also translating
the estimated parameter covariance.

sys2 = translatecov(@(x)idss(x),sys1);

If you convert the transfer function model to state-space form directly,
the estimated parameter covariance is lost (the output of getcov is
empty).

sys3 = idss(sys1);
getcov(sys3)

ans =

[]

View the parameter covariance in the estimated and converted models.

covsys1 = getcov(sys1);
covsys2 = getcov(sys2);

Compare the confidence regions.

h = bodeplot(sys1,sys2);
showConfidence(h,2);

The confidence bounds for sys1 overlaps with sys2.

1-976

translatecov

Translate Parameter Covariance During Model Concatenation

Concatenate 3 single-output models such that the covariance data from
the 3 models combine to produce the covariance data for the resulting
model.

Construct a state-space model.

a = [-1.1008 0.3733;0.3733 -0.9561];
b = [0.7254 0.7147;-0.0631 -0.2050];
c = [-0.1241 0; 1.4897 0.6715; 1.4090 -1.2075];
d = [0 1.0347; 1.6302 0; 0.4889 0];
sys = idss(a,b,c,d,'Ts',0);

Generate multi-output estimation data.

t = (0:0.01:0.99)';
u = randn(100,2);
y = lsim(sys,u,t,'zoh');

1-977

translatecov

y = y + rand(size(y))/10;
data = iddata(y,u,0.01);

Estimate a separate model for each output signal.

m1 = ssest(data(:,1,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'no
m2 = ssest(data(:,2,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'no
m3 = ssest(data(:,3,:),2,'feedthrough',true(1,2), 'DisturbanceModel', 'no

Combine the estimated models while also translating the covariance
information.

f = @(x,y,z)[x;y;z];
M2 = translatecov(f, m1, m2, m3);
getcov(M2, 'factors')

The parameter covariance is not empty.

getcov(M2, 'factors')

ans =

R: [36x36 double]
T: [24x36 double]

Free: [90x1 logical]

If you combine the estimated models into one 3-output model directly,
the covariance information is lost (the output of getcov is empty).

M1 = [m1;m2;m3];
getcov(M1)

ans

[]

Compare the confidence bounds.

1-978

translatecov

h = bodeplot(M2, m1, m2, m3)
showConfidence(h);

The confidence bounds for M2 overlap with those of m1, m2 and m3 models
on their respective plot axes.

Algorithms translatecov uses numerical perturbations of individual parameters
of sys to compute the Jacobian of fcn(sys) parameters with respect to
parameters of sys. translatecov then applies Gauss Approximation

1-979

translatecov

formula cov new J JT_ cov × to translate the covariance, where J is
the Jacobian matrix. This operation can be slow for models containing a
large number of free parameters.

See Also getcov | setcov | getpvec | resample

Concepts • “What Is Model Covariance?”
• “Types of Model Uncertainty Information”

1-980

treepartition

Purpose Class representing binary-tree nonlinearity estimator for nonlinear
ARX models

Syntax t=treepartition(Property1,Value1,...PropertyN,ValueN)
t=treepartition('NumberOfUnits',N)

Description treepartition is an object that stores the binary-tree nonlinear
estimator for estimating nonlinear ARX models. The object defines

a nonlinear function y F x= () , where F is a piecewise-linear (affine)
function of x, y is scalar, and x is a 1-by-m vector. Compute the value of
F using evaluate(t,x), where t is the treepartition object at x.

Construction t=treepartition(Property1,Value1,...PropertyN,ValueN) creates
a binary tree nonlinearity estimator object specified by properties in
“treepartition Properties” on page 1-981. The tree has the number
of leaves equal to 2^(J+1)-1, where J is the number of nodes in the
tree and set by the property NumberOfUnits. The default value of
NumberOfUnits is computed automatically and sets an upper limit on
the actual number of tree nodes used by the estimator.

t=treepartition('NumberOfUnits',N) creates a binary tree
nonlinearity estimator object with N terms in the binary tree expansion
(the number of nodes in the tree). When you estimate a model
containing t, the value of the NumberOfUnits property, N, in t is
automatically changed to show the actual number of leaves used—which
is the largest integer of the form 2^n-1 and less than or equal to N.

treepartition
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

1-981

treepartition

You can also use the set function to set the value of particular
properties. For example:

set(t, 'NumberOfUnits', 5)

The first argument to set must be the name of a MATLAB variable.

Property Name Description

NumberOfUnits Integer specifies the number of nodes in the tree.
Default='auto' selects the number of nodes from the data
using the pruning algorithm.

When you estimate a model containing a treepartition
nonlinearity, the value of NumberOfUnits is automatically
changed to show the actual number of leaves used—which is
the largest integer of the form 2^n-1 and less than or equal to
N (the integer value of units you specify).

For example:

treepartition('NumberOfUnits',5)

Parameters Structure containing the following fields:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• RegressorMinMax: m-by-2 matrix containing the maximum
and minimum estimation-data regressor values.

• OutputOffset: scalar d.

• LinearCoef: m-by-1 vector L.

• SampleLength: Length of estimation data.

• NoiseVariance: Estimated variance of the noise in
estimation data.

• Tree: A structure containing the following tree parameters:

1-982

treepartition

Property Name Description

- TreeLevelPntr: N-by-1 vector containing the levels j of
each node.

- AncestorDescendantPntr: N-by-3 matrix, such that
the entry (k,1) is the ancestor of node k, and entries
(k,2) and (k,3) are the left and right descendants,
respectively.

- LocalizingVectors: N-by-(m+1) matrix, such that the
rth row is B_r.

- LocalParVector: N-by-(m+1) matrix, such that the kth
row is C_k.

- LocalCovMatrix: N-by-((m+1)m/2) matrix such that the
kth row is the covariance matrix of C_k. C_k is reshaped
as a row vector.

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest partition.
Default: 'auto', which computes the value from the data.

• Threshold: Threshold parameter used by the adaptive
pruning algorithm. Smaller threshold value corresponds to
a shorter branch that is terminated by the active partition
D_a. Higher threshold value results in a longer branch.
Default: 1.0.

• Stabilizer: Penalty parameter of the penalized
least-squares algorithm used to compute local parameter
vectors C_k. Higher stabilizer value improves stability, but
may deteriorate the accuracy of the least-square estimate.
Default: 1e-6.

1-983

treepartition

Algorithms The mapping F is defined by a dyadic partition P of the x-space, such
that on each partition element Pk, F is a linear mapping. When x
belongs to Pk, F(x) is given by:

F x d xL x Ck() , ,= + + ()1

where L is 1-by-m vector and d is a scalar common for all elements of
partition. Ck is a 1-by-(m+1) vector.

The mapping F and associated partition P of the x-space are computed
as follows:

1 Given the value of J, a dyadic tree with J levels and N = 2J–1 nodes is
initialized.

2 Each node at level 1 < j < J has two descendants at level j + 1 and
one parent at level j – 1.

• The root node at level 1 has two descendants.

• Nodes at level J are terminating leaves of the tree and have one
parent.

3 One partition element is associated to each node k of the tree.

• The vector of coefficients Ck is computed using the observations
on the corresponding partition element Pk by the penalized
least-squares algorithm.

• When the node k is not a terminating leaf, the partition element
Pk is cut into two to obtain the partition elements of descendant
nodes. The cut is defined by the half-spaces (1,x)Bk > 0 or <=0
(move to left or right descendant), where Bk is chosen to improve
the stability of least-square computation on the partitions at the
descendant nodes.

4 When the value of the mapping F, defined by the treepartition
object, is computed at x, an adaptive algorithm selects the active node
k of the tree on the branch of partitions which contain x.

1-984

treepartition

When the idnlarx property Focus is 'Prediction', treepartition
uses a noniterative technique for estimating parameters. Iterative
refinements are not possible for models containing this nonlinearity
estimator.

You cannot use treepartition when Focus is 'Simulation' because
this nonlinearity estimators is not differentiable. Minimization of
simulation error requires differentiable nonlinear functions.

Examples Use treepartition to specify the nonlinear estimator in nonlinear
ARX models. For example:

m=nlarx(Data,Orders,treepartition('num',5));

The following commands provide an example of using advanced
treepartition options:

% Define the treepartition object.
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure.
t.Options.Threshold=2;
% Estimate the nonlinear ARX model.
m=nlarx(Data,Orders,t);

See Also nlarx

1-985

TrendInfo

Purpose Offset and linear trend slope values for detrending data

Description TrendInfo class represents offset and linear trend information of input
and output data. Constructing the corresponding object lets you:

• Compute and store mean values or best-fit linear trends of input
and output data signals.

• Define specific offsets and trends to be removed from input-output
data.

By storing offset and trend information, you can apply it to multiple
data sets.

After estimating a linear model from detrended data, you can simulate
the model at original operation conditions by adding the saved trend to
the simulated output using retrend.

Construction For transient data, if you want to define a specific offset or trend to be
removed from this data, create the TrendInfo object using getTrend.
For example:

T=getTrend(data)

where data is the iddata object from which you will be removing the
offset or linear trend, and T is the TrendInfo object. You must then
assign specific offset and slope values as properties of this object before
passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the
trend information, use the detrend command with the output argument
for storing trend information.

Properties After creating the object, you can use get or dot notation to access the
object property values.

1-986

TrendInfo

Property
Name

Default Description

DataName Empty string Name of the iddata object from which trend
information is derived (if any)

InputOffset zeros(1,nu), where
nu is the number of
inputs

• For transient data, the physical equilibrium
offset you specify for each input signal.

• For steady-state data, the mean of input values.
Computed automatically when detrending the
data.

• If removing a linear trend from the input-output
data, the value of the line at t0, where t0 is the
start time.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

InputSlope zeros(1,nu), where
nu is the number of
inputs

Slope of linear trend in input data, computed
automatically when using the detrend command
to remove the linear trend in the data.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

1-987

TrendInfo

Property
Name

Default Description

OutputOffset zeros(1,ny), where
ny is the number of
outputs

• For transient data, the physical equilibrium
offset you specify for each output signal

• For steady-state data, the mean of output values.
Computed automatically when detrending the
data.

• If removing a linear trend from the intput-output
data, the value of the line at t0, where t0 is the
start time.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

OutputSlope zeros(1,ny), where
ny is the number of
outputs

Slope of linear trend in output data, computed
automatically when using the detrend command
to remove the linear trend in the data.

For multiple experiment data, this is a cell array
of size equal to the number of experiments in the
data set.

Examples Construct the object that stores trend information as part of data
detrending:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Detrend the mean from the data
% Store the mean as TrendInfo object T
[data_d,T] = detrend(data,0)
% View mean value removed from the data

1-988

TrendInfo

get(T)

Construct the object that stores input and output offsets to be removed
from transient data:

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% View mean value removed from the data
get(T)

See Also detrend | getTrend | retrend

How To • “Handling Offsets and Trends in Data”

1-989

unitgain

Purpose Specify absence of nonlinearities for specific input or output channels
in Hammerstein-Wiener models

Syntax unit=unitgain

Description unit=unitgain instantiates an object that specifies an identity
mapping F(x)=x to exclude specific input and output channels from
being affected by a nonlinearity in Hammerstein-Wiener models.

Use the unitgain object as an argument in the nlhw estimator to set
the corresponding channel nonlinearity to unit gain.

For example, for a two-input and one-output model, to exclude the
second input from being affected by a nonlinearity, use the following
syntax:

m = nlhw(data,orders,['saturation''unitgain'],'deadzone')

In this case, the first input saturates and the output has an associated
deadzone nonlinearity.

Tips Use the unitgain object to exclude specific input and output channels
from being affected by a nonlinearity in Hammerstein-Wiener models.

unitgain is a linear function y F x= () , where F(x)=x.

unitgain
Properties

unitgain does not have properties.

Examples For example, for a one-input and one-output model, to exclude the
output from being affected by a nonlinearity, use the following syntax:

m = nlhw(Data,Orders,'saturation','unitgain')

In this case, the input has a saturation nonlinearity.

If nonlinearities are absent in input or output channels, you can replace
unitgain with an empty matrix. For example, to specify a Wiener

1-990

unitgain

model with a sigmoid nonlinearity at the output and a unit gain at the
input, use the following command:

m = nlhw(Data,Orders,[],'sigmoid');

See Also deadzone | nlhw | saturation | sigmoidnet

1-991

wavenet

Purpose Class representing wavelet network nonlinearity estimator for
nonlinear ARX and Hammerstein-Wiener models

Syntax s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

Description wavenet is an object that stores the wavelet network nonlinear
estimator for estimating nonlinear ARX and Hammerstein-Wiener
models.

You can use the constructor to create the nonlinearity object, as follows:

s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity
estimator object with N terms in the wavelet expansion.

s=wavenet(Property1,Value1,...PropertyN,ValueN) creates
a wavelet nonlinearity estimator object specified by properties in
“wavenet Properties” on page 1-993.

Use evaluate(s,x) to compute the value of the function defined by
the wavenet object s at x.

Tips Use wavenet to define a nonlinear function y F x= () , where y is scalar
and x is an m-dimensional row vector. The wavelet network function is
based on the following function expansion:

F x x r PL a f b x r Q cs s s() () _ _ _= − + −() −()() +1 1 1

+ −() −()()a f b x r Q cs ns s ns s ns_ _ _

+ −() −()() +a g b x r Q cw w w_ _ _1 1 1

++ −() −()() +a g b x r Q c dw nw w nw w nw_ _ _

where:

• f is a scaling function.

• g is the wavelet function.

• P and Q are m-by-p and m-by-q projection matrices, respectively.

1-992

wavenet

The projection matrices P and Q are determined by principal
component analysis of estimation data. Usually, p=m. If the
components of x in the estimation data are linearly dependent, then
p<m. The number of columns of Q, q, corresponds to the number of
components of x used in the scaling and wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the
NonlinearRegressors property of the idnlarx object. When used in
a Hammerstein-Wiener model, m=q=1 and Q is a scalar.

• r is a 1-by-m vector and represents the mean value of the regressor
vector computed from estimation data.

• d, as, bs, aw, and bw are scalars. Parameters with the s subscript are
scaling parameters, and parameters with the w subscript are wavelet
parameters.

• L is a p-by-1 vector.

• cs and cw are 1-by-q vectors.

The scaling function f and the wavelet function g are both radial
functions, as follows:

f x e

g x N xx e

xx

r
xx

()

() (-)

- .

- .

0 5

0 5

where Nr is the length of x (number of regressors).

wavenet
Properties

You can include property-value pairs in the constructor to specify the
object.

After creating the object, you can use get or dot notation to access the
object property values. For example:

% List all property values
get(w)
% Get value of NumberOfUnits property
w.NumberOfUnits

1-993

wavenet

You can also use the set function to set the value of particular
properties. For example:

h set(w, 'LinearTerm', 'on')

The first argument to set must be the name of a MATLAB variable.

Property Name Description

NumberOfUnits Integer specifies the number of nonlinearity units in the
expansion.
Default='auto'.

For example:

wavenet('NumberOfUnits',5)

LinearTerm Can have the following values:

• 'on'— (Default) Estimates the vector L in the expansion.

• 'off' — Fixes the vector L to zero and omits the term

x r PL−() .

For example:

wavenet(H,'LinearTerm','on')

1-994

wavenet

Property Name Description

Parameters Structure containing the parameters in the nonlinear
expansion, as follows:

• RegressorMean: 1-by-m vector containing the means of x
in estimation data, r.

• NonLinearSubspace: m-by-q matrix containing Q.

• LinearSubspace: m-by-p matrix containing P.

• LinearCoef: p-by-1 vector L.

• ScalingDilation: ns-by-1 matrix containing the values
bs_ns.

• WaveletDilation: nw-by-1 matrix containing the values
bw_nw.

• ScalingTranslation: ns-by-q matrix containing the values
cs_ns.

• WaveletTranslation: nw-by-q matrix containing the values
cw_nw.

• ScalingCoef: ns-by-1 vector containing the values as_ns.

• WaveletCoef: nw-by-1 vector containing the values aw_nw.

• OutputOffset: scalar d.

1-995

wavenet

Property Name Description

Options Structure containing the following fields that affect the initial
model:

• FinestCell: Integer or string specifying the minimum
number of data points in the smallest cell. A cell is the area
covered by the significantly nonzero portion of a wavelet.
Default: 'auto', which computes the value from the data.

• MinCells: Integer specifying the minimum number of cells
in the partition. Default: 16.

• MaxCells: Integer specifying the maximum number of cells
in the partition. Default: 128.

• MaxLevels: Integer specifying the maximum number of
wavelet levels. Default: 10.

• DilationStep: Real scalar specifying the dilation step size.
Default: 2.

• TranslationStep: Real scalar specifying the translation
step size. Default: 1.

Algorithms When the idnlarx property Focus is 'Prediction', wavenet uses
a fast, noniterative technique for estimating parameters. Successive
refinements after the first estimation use an iterative algorithm.

When the idnlarx property Focus='Simulation', wavenet uses an
iterative technique for estimating parameters.

To always use noniterative or iterative algorithm, specify the
IterWavenet algorithm property of the idnlarx class.

Examples Use wavenet to specify the nonlinear estimator in nonlinear ARX and
Hammerstein-Wiener models. For example:

m=nlarx(Data,Orders,wavenet);

1-996

wavenet

See Also nlarx | nlhw

1-997

xperm

Purpose Reorder states in state-space models

Syntax sys = xperm(sys,P)

Description sys = xperm(sys,P) reorders the states of the state-space model
sys according to the permutation P. The vector P is a permutation of
1:NX, where NX is the number of states in sys. For information about
creating state-space models, see ss and dss.

Examples Order the states in the ssF8 model in alphabetical order.

1 Load the ssF8 model by typing the following commands:

load ltiexamples
ssF8

These commands return:

a =

PitchRate Velocity AOA PitchAngle

PitchRate -0.7 -0.0458 -12.2 0

Velocity 0 -0.014 -0.2904 -0.562

AOA 1 -0.0057 -1.4 0

PitchAngle 1 0 0 0

b =

Elevator Flaperon

PitchRate -19.1 -3.1

Velocity -0.0119 -0.0096

AOA -0.14 -0.72

PitchAngle 0 0

c =

PitchRate Velocity AOA PitchAngle

FlightPath 0 0 -1 1

Acceleration 0 0 0.733 0

1-998

xperm

d =

Elevator Flaperon

FlightPath 0 0

Acceleration 0.0768 0.1134

Continuous-time model.

2 Order the states in alphabetical order by typing the following
commands:

[y,P]=sort(ssF8.StateName);
sys=xperm(ssF8,P)

These commands return:

a =

AOA PitchAngle PitchRate Velocity

AOA -1.4 0 1 -0.0057

PitchAngle 0 0 1 0

PitchRate -12.2 0 -0.7 -0.0458

Velocity -0.2904 -0.562 0 -0.014

b =

Elevator Flaperon

AOA -0.14 -0.72

PitchAngle 0 0

PitchRate -19.1 -3.1

Velocity -0.0119 -0.0096

c =

AOA PitchAngle PitchRate Velocity

FlightPath -1 1 0 0

Acceleration 0.733 0 0 0

d =

Elevator Flaperon

FlightPath 0 0

Acceleration 0.0768 0.1134

1-999

xperm

Continuous-time model.

The states in ssF8 now appear in alphabetical order.

See Also ss | dss

1-1000

zero

Purpose Zeros and gain of SISO dynamic system

Syntax z = zero(sys)
[z,gain] = zero(sys)
[z,gain] = zero(sysarr,J1,...,JN)

Description z = zero(sys) returns the zeros of the single-input, single-output
(SISO) dynamic system model, sys.

[z,gain] = zero(sys) also returns the overall gain of sys.

[z,gain] = zero(sysarr,J1,...,JN) returns the zeros and gain of
the model with subscripts J1,...,JN in the model array sysarr.

Input
Arguments

sys

SISO dynamic system model.

If sys has internal delays, zero sets all internal delays to zero, creating
a zero-order Padé approximation. This approximation ensures that the
system has a finite number of zeros. zero returns an error if setting
internal delays to zero creates singular algebraic loops.

sysarr

Array of dynamic system models.

J1,...,JN

Indices identifying the model sysarr(J1,...,JN) in the array sysarr.

Output
Arguments

z

Column vector containing the locations of zeros in sys. The zero
locations are expressed in the reciprocal of the time units of sys. For
example, the zeros are in units of 1/minutes if the TimeUnit property of
sys is minutes.

gain

1-1001

zero

Gain of sys (in the zero-pole-gain sense).

Examples Calculate the zero locations and overall gain of the transfer function

H s
s s

s s

4 2 0 25 0 004

9 6 17

2

2
. . .

.
.

H = tf([4.2,0.25,-0.004],[1,9.6,17]);
[z,gain] = zero(H)

z =

-0.0726
0.0131

gain =

4.2000

The zero locations are expressed in radians per second, because the time
unit of the transfer function (H.TimeUnit) is seconds. Change the model
time units, and zero returns pole locations relative to the new unit.

H = chgTimeUnit(H,'minutes');
[z,gain] = zero(H)

z =

-4.3581
0.7867

gain =

4.2000

1-1002

zero

Alternatives To calculate the transmission zeros of a multi-input, multi-output
system, use tzero.

See Also pole | pzmap | tzero

1-1003

zgrid

Purpose Generate z-plane grid of constant damping factors and natural
frequencies

Syntax zgrid
zgrid(z,wn)
zgrid([],[])

Description zgrid generates, for root locus and pole-zero maps, a grid of constant
damping factors from zero to one in steps of 0.1 and natural frequencies
from zero to π in steps of π/10, and plots the grid over the current axis.
If the current axis contains a discrete z-plane root locus diagram or
pole-zero map, zgrid draws the grid over the plot without altering the
current axis limits.

zgrid(z,wn) plots a grid of constant damping factor and natural
frequency lines for the damping factors and normalized natural
frequencies in the vectors z and wn, respectively. If the current axis
contains a discrete z-plane root locus diagram or pole-zero map,
zgrid(z,wn) draws the grid over the plot. The frequency lines for
unnormalized (true) frequencies can be plotted using

zgrid(z,wn/Ts)

where Ts is the sample time.

zgrid([],[]) draws the unit circle.

Alternatively, you can select Grid from the right-click menu to generate
the same z-plane grid.

Examples Plot z-plane grid lines on the root locus for the system

H z
z z

z z
()

. .

. .
= − +

− +
2 3 4 1 5

1 6 0 8

2

2

by typing

H = tf([2 -3.4 1.5],[1 -1.6 0.8],-1)

1-1004

zgrid

Transfer function:
2 z^2 - 3.4 z + 1.5

z^2 - 1.6 z + 0.8

Sampling time: unspecified

To see the z-plane grid on the root locus plot, type

rlocus(H)
zgrid
axis('square')

See Also pzmap | rlocus | sgrid

1-1005

zpkdata

Purpose Access zero-pole-gain data

Syntax [z,p,k] = zpkdata(sys)
[z,p,k,Ts,Td] = zpkdata(sys)
[z,p,k,Ts,covp,covk] = zpkdata(sys)

Description [z,p,k] = zpkdata(sys) returns the zeros z, poles p, and gain(s) k
of the zero-pole-gain model sys. The outputs z and p are cell arrays
with the following characteristics:

• z and p have as many rows as outputs and as many columns as
inputs.

• The (i,j) entries z{i,j} and p{i,j} are the (column) vectors of
zeros and poles of the transfer function from input j to output i.

The output k is a matrix with as many rows as outputs and as many
columns as inputs such that k(i,j) is the gain of the transfer function
from input j to output i. If sys is a transfer function or state-space
model, it is first converted to zero-pole-gain form using zpk.

For SISO zero-pole-gain models, the syntax

[z,p,k] = zpkdata(sys,'v')

forces zpkdata to return the zeros and poles directly as column vectors
rather than as cell arrays (see example below).

[z,p,k,Ts,Td] = zpkdata(sys) also returns the sample time Ts.

[z,p,k,Ts,covp,covk] = zpkdata(sys) also returns the covariances
of the zeros, poles and gain of the identified model sys. covz is a cell
array such that covz{ky,ku} contains the covariance information
about the zeros in the vector z{ky,ku}. covz{ky,ku} is a 3-D array of
dimension 2-by-2-by-Nz, where Nz is the length of z{ky,ku}, so that the
(1,1) element is the variance of the real part, the (2,2) element is
the variance of the imaginary part, and the (1,2) and (2,1) elements
contain the covariance between the real and imaginary parts. covp has
a similar relationship to p.covk is a matrix containing the variances
of the elements of k.

1-1006

zpkdata

You can access the remaining LTI properties of sys with get or by
direct referencing, for example,

sys.Ts
sys.inputname

Examples Example 1

Given a zero-pole-gain model with two outputs and one input

H = zpk({[0];[-0.5]},{[0.3];[0.1+i 0.1-i]},[1;2],-1)
Zero/pole/gain from input to output...

z
#1: -------

(z-0.3)

2 (z+0.5)
#2: -------------------

(z^2 - 0.2z + 1.01)

Sampling time: unspecified

you can extract the zero/pole/gain data embedded in H with

[z,p,k] = zpkdata(H)
z =

[0]
[-0.5000]

p =
[0.3000]
[2x1 double]

k =
1
2

To access the zeros and poles of the second output channel of H, get the
content of the second cell in z and p by typing

1-1007

zpkdata

z{2,1}
ans =

-0.5000
p{2,1}
ans =

0.1000+ 1.0000i
0.1000- 1.0000i

Example 2

Extract the ZPK matrices and their standard deviations for a 2-input, 1
output identified transfer function.

load iddata7

transfer function model

sys1 = tfest(z7, 2, 1, 'InputDelay',[1 0]);

an equivalent process model

sys2 = procest(z7, {'P2UZ', 'P2UZ'}, 'InputDelay',[1 0]);

1, p1, k1, ~, dz1, dp1, dk1] = zpkdata(sys1);
[z2, p2, k2, ~, dz2, dp2, dk2] = zpkdata(sys2);

Use iopzplot to visualize the pole-zero locations and their covariances

h = iopzplot(sys1, sys2);
showConfidence(h)

See Also get | ssdata | tfdata | zpk

1-1008

2

Blocks — Alphabetical List

AR Estimator

Purpose Estimate parameters of AR model from scalar time series in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The AR Estimator block estimates the parameters of an AR model for a
scalar time series and returns the model as an idpoly object. A time
series is time-domain data consisting of one or more outputs y(t) and
no corresponding measured input.

For information about the default algorithm settings used for model
estimation, see arOptions.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The AR model is defined, as follows:

y t a y t a y t n e tn aa
() () () ()+ − + + − =1 1

where

• y(t) is the output at time t.

• a an1 are the parameters to be estimated from the data.

• na is the number of poles of the system.

• y t y t na() ()− −1 are the previous outputs on which the current
output depends.

• e(t) is white-noise disturbance.

2-2

AR Estimator

The AR model can be written compactly for a single output y(t) using
the following notation:

A q y t e t() () ()=

where A q a q a qn
n

a
a() = + + +− −1 1

1 and q−1 is the backward shift

operator defined by q u t u t− = −1 1() () .

The following block diagram shows the AR model structure.

Input Time-series signal.

Output The AR Estimator block outputs a sequence of multiple models (idpoly
objects), estimated at regular intervals during the simulation. TheData
window field in the block parameter dialog box specifies the number of
data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-3

AR Estimator

Dialog
Box

Orders of model [na]

Integer na corresponds to the number of a parameters (poles)
in the AR model.

How often to update model (samples)
Number of input data samples that specify the interval after
which to estimate a new model.

2-4

AR Estimator

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Prediction horizon
Specifies the forward-prediction horizon for computing the
response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the AR Estimator block in a
Simulink model.

1 Generate sample input and output data.

2-5

AR Estimator

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify y in the Iddata object
field of the IDDATA Source block parameter dialog box.

• Add the AR Estimator block to the model and accept default block
parameter values.

• Connect the Output port of the IDDATA Source block to the y port
of the AR Estimator block.

3 Run the estimation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

See Also Related Commands

ar

idpoly

Topics in the System Identification Toolbox User’s Guide

“Estimating AR and ARMA Models”

2-6

ARMAX Estimator

Purpose Estimate parameters of ARMAX model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The ARMAX Estimator block estimates the parameters of a single-input
and single-output ARMAX model and returns the model as an idpoly
object.

For information about the default algorithm settings used for model
estimation, see armaxOptions.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The ARMAX model is defined, as follows:

y t a y t a y t n

b u t b u t n e t c e
n a

n b

a

b

() () ()

() () () (

+ − + + − =

− + + − + +
1

1 1

1

1

 tt c e t nn cc
− + + −1) ()

where

• y(t) is the output at time t .

• a an1 , b bn1 , and c cn1 are the parameters to be estimated.

• na is the number of poles of the system.

• nb −1 is the number of zeros of the system.

• nc is the number of previous error terms on which the current output
depends.

2-7

ARMAX Estimator

• nk is the number of input samples that occur before the inputs
affecting the current output.

• y t y t na() ()− −1 are the previous outputs on which the current
output depends.

• u t n u t n nk k b() ()− − − + 1 are the previous inputs on which the
current output depends.

• e t e t e t nc(), (), ()− −1 are the white-noise disturbance values on
which the current output depends.

The ARMAX model can also be written in a compact way using the
following notation:

A q y t B q u t C q e t() () () () () ()= +

where

A q a q a q

B q b b q b q

C q c q

n
n

n
n

a
a

b
b

()

()

()

= + + +

= + + +

= +

− −

− − +

−

1

1

1
1

1 2
1 1

1

11 + −a qn
n

c
c

and q−1 is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARMAX model structure.

2-8

ARMAX Estimator

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

Output The ARMAX Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-9

ARMAX Estimator

Dialog
Box

Orders of model [na nb nc nk]
Integers na, nb, nc, and nk specify the number of A, B, and C model
parameters and nk is input-output delay, respectively.

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

2-10

ARMAX Estimator

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how to use the ARMAX Estimator block in a
Simulink model.

2-11

ARMAX Estimator

1 Generate sample input and output data.

u = sin([1:300]') + 0.6*(rand(300,1)-0.5);
y = cos(u) + 0.1*rand(300,1);
IODATA = iddata(y,u,1);

2 Create a new Simulink model, as follows.

Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

Add the ARMAX Estimator block to the model and set the model
orders to [4 4 4 0] and set the sample time to 1.

Connect the Input and Output ports of the IDDATA Source block to
the u and y ports of the ARMAX Estimator block, respectively. Set
the simulation end time to 300 seconds.

3 Run the simulation.

The estimated models display in the MATLAB Command Window
every 25 samples.

See Also Related Commands

armax

idpoly

2-12

ARMAX Estimator

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

2-13

ARX Estimator

Purpose Estimate parameters of ARX model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The ARX block uses least-squares analysis to estimate the parameters
of an ARX model and returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see arxOptions.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The ARX model is defined, as follows:

y t a y t a y t n b u t b u t n n e tn a n k ba b
() () () () () ()+ − + + − = − + + − − + +1 11 1 1

where

• y(t) is the output at time t .

• a an1 and b bn1 are the parameters to be estimated.

• na is the number of poles of the system.

• nb −1 is the number of zeros of the system.

• nk is the number of input samples that occur before the inputs that
affect the current output.

• y t y t na() ()− −1 are the previous outputs on which the current
output depends.

2-14

ARX Estimator

• u t n u t n nk k b() ()− − − + 1 are the previous inputs on which the
current output depends.

• e(t) is a white-noise disturbance value.

The ARX model can also be written in a compact way using the
following notation:

A q y t B q u t n e tk() () () () ()= − +

where

A q a q a q

B q b b q b q

n
n

n
n

a
a

b
b

()

()

= + + +

= + + +

− −

− − +

1 1
1

1 2
1 1

and q−1 is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARX model structure.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

2-15

ARX Estimator

Output The ARX Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-16

ARX Estimator

Dialog
Box

Orders of model [na nb nk]
Integers na, nb, and nk specify the number of A and B model
parameters and nk is input-output delay, respectively.

How often to update model [samples]
Number of input data samples that specify the interval after
which to estimate a new model.

2-17

ARX Estimator

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

2-18

ARX Estimator

Examples This example shows how you can use the ARX Estimator block in a
Simulink model.

1 Specify the data from iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the ARX Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the ARX Estimator block, respectively.

3 Run the simulation.

See Also Related Commands

arx

idpoly

2-19

ARX Estimator

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

2-20

BJ Estimator

Purpose Estimate parameters of Box-Jenkins model from SISO data in Simulink
software returning idpoly object

Library System Identification Toolbox

Description The BJ Estimator block estimates the parameters of a Box-Jenkins
model, and returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see bjOptions.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The Box-Jenkins model is defined, as follows:

y t
B q
F q

u t n
C q
D q

e tk()
()
()

()
()
()

()= − +

where the coefficients of

B q b b q b q

F q f q f q

C q c q

n
n

n
n

b
b

f

f

()

()

()

= + + +

= + + +

= +

− − +

− −

−

1 2
1 1

1
1

1

1

1

11

1
11

+ +

= + + +

−

− −

c q

D q d q d q

n
n

n
n

c
c

d
d()

are the parameters being estimated, and q−1 is the backward shift

operator defined by q u t u t− = −1 1() () .

The following block diagram shows the Box-Jenkins model structure.

2-21

BJ Estimator

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

Output The BJ Estimator block outputs a sequence of multiple models (idpoly),
estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-22

BJ Estimator

Dialog
Box

Orders of model [nb nc nd nf nk]
Integers nb, nc, nd, and nf specify the number of B, C, D, and F
model parameters, respectively.

Integer nk specifies the input-output delay.

2-23

BJ Estimator

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of data window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

2-24

BJ Estimator

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

Examples This example shows how you can use the BJ Estimator block in a
Simulink model.

1 Specify the data in iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the BJ Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the BJ Estimator block, respectively.

3 Run the simulation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

2-25

BJ Estimator

See Also Related Commands

bj

idpoly

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

2-26

IDDATA Sink

Purpose Export iddata object to MATLAB workspace

Library System Identification Toolbox

Description The IDDATA Sink block exports an iddata object to the MATLAB
workspace.

Input

The first block input is the input of specified iddata object in the
MATLAB workspace. Similarly, the second block input is the output of
the specified iddata object.

Output

None.

2-27

IDDATA Sink

Dialog Box

IDDATA Name
Name of the iddata object in the MATLAB workspace.

Sample Time (sec.)
Time interval (in seconds) between successive data samples.

See Also IDDATA Source

2-28

IDDATA Source

Purpose Import iddata object from MATLAB workspace

Library System Identification Toolbox

Description The IDDATA Source block imports an iddata object from the MATLAB
workspace.

Input

None.

Output

The first block output is the input signal of the iddata object imported
from the MATLAB workspace.

The second block output is the output signal of this iddata object.

2-29

IDDATA Source

Dialog
Box

Iddata object
Name of the iddata object imported from the MATLAB
workspace.

The iddata object must contain only one experiment. For a
multiple-experiment object, use getexp(data,kexp) to specify
the experiment number kexp.

See Also IDDATA Sink

2-30

IDMODEL Model

Purpose Simulate identified linear model in Simulink software

Library System Identification Toolbox

Description The IDMODEL block simulates a linear model in the MATLAB
workspace.

Note For simulating nonlinear models, use the IDNLGREY,
IDNLARX, or IDNLHW Model blocks.

Input

Input signal to the model.

Output

Simulated output from the model.

2-31

IDMODEL Model

Dialog
Box

Model variable
Name of identified linear model variable in the MATLAB
workspace, which can be an idpoly, idss, idgrey, idarx
or idproc model object that you estimated using System
Identification Toolbox software.

This block supports both continuous-time and discrete-time
models with or without input-output delays.

Initial state (state space only)
Initial state vector.

(Default) 'z' (in quotation marks) specifies zero, which
corresponds to a simulation starting from a state of rest.

2-32

IDMODEL Model

Enter 'm' to use the internal initial states of the model, stored by
the idss or idgrey model property X0.

To specify your own initial states, enter one of the following:

• Enter known initial states for a state-space model directly, as a
numerical vector.

Note For non-state-space models, the initial conditions are 0.

• Compute the initial states using the
findstates(idParametric) command to get the initial state
values that produce the best fit between the model output and
the measured output signal.

For example, if the data set z and model m are already in the
MATLAB workspace, you can enter X0, such that:

X0 = findstates(m,z1)

Add noise
Select when you need to add noise, as specified by the model
property model.NoiseVariance and the matrices or polynomials
that determine the color of the additive noise.

For continuous-time models, the ideal variance of the noise term
at any moment is infinite. In reality, you see a band-limited noise
that takes into account the natural time constants of the system.
You can interpret the resulting simulated output as filtered
using a low-pass filter with a pass-band that does not distort the
dynamics from the input.

Noise seed(s)
(Use when you select the Add noise check box.)

Enter an integer that specifies a seed that forces the simulation
to add the same noise to the output every time you simulate the

2-33

IDMODEL Model

model. For more information about using seeds with functions
that generate random number sequences, see the rand reference
page in MATLAB documentation, for example.

See Also findstates(idParametric) | idpoly | idss | idtf | idproc

2-34

IDNLARX Model

Purpose Simulate nonlinear ARX model in Simulink software

Library System Identification Toolbox

Description The IDNLARX Model block simulates a nonlinear ARX (idnlarx) model
for time-domain input and output data.

Input Input signal to the model.

Output Simulated output from the model.

2-35

IDNLARX Model

Dialog
Box

Model
Name of idnlarx variable in the MATLAB workspace.

Initial conditions
Specifies the initial states as one of the following:

• Input and output values: Specify the input and output
levels, as follows:

— Input level

2-36

IDNLARX Model

If known, enter a vector of length equal to the number of
model inputs. If you enter a scalar, it is the signal value
for all inputs.

— Output level

If known, enter a vector of length equal to the number of
model’s outputs. If you enter a scalar, it is the signal value
for all outputs.

• State values: When selected, you must specify a vector of
length equal to the number of states in the model in the Vector
of state values field.

If you do not know the initial states, you can estimate these
states, as follows:

— To simulate around a given input level when you do not
know the corresponding output level, you can estimate
the equilibrium state values using the findop(idnlarx)
command.

For example, to simulate a model M about a steady-state
point where the input is 1 and the output is unknown, you
can enter X0, such that:

X0 = findop(M,'steady',1,NaN)

— To estimate the initial states that provide a best fit between
measured data and the simulated response of the model for
the same input, use the findstates(idnlarx) command.

For example, to compute initial states such that the response
of the model M matches the output data in the data set z,
you can enter X0, such that:

X0 = findstates(M,z,[],'sim')

— To continue a simulation from a previous run, use the
simulated input-output values from the previous simulation
to compute the initial states X0 for the current simulation.

2-37

IDNLARX Model

For example, suppose that firstSimData is a variable
that stores the input and output values from a previous
simulation. For a model M, you can enter X0, such that:

X0 = data2state(M,firstSimData)

Examples Example 1

In this example, you estimate a nonlinear ARX model from data and
compare the model output to the measured output of the system.

1 Load the sample data.

load twotankdata

2 Create a data object from sample data.

z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000);

3 Estimate a nonlinear ARX model.

mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

4 Build the following Simulink model using the IDDATA Source,
IDNLARX Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into
the block parameter dialog box:

2-38

IDNLARX Model

IDDATA Object: z1

Click OK.

6 Double-click the IDNLARX Model block and enter the following into
the block parameter dialog box:

• Model: mw1

• Initial conditions: Select Input and output values and accept
the default values.

7 Run the simulation.

Click the Scope block to view the difference between the measured
output and the model output. Use the Autoscale command to scale
the axes.

Example 2

In this example, you reduce the difference between the measured and
simulated responses. To achieve this, you use the findstates command
to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z1.

x0 = findstates(mw1,z1,[],'simulation');

2 Set the Initial Conditions to State Values. Enter x0 in the
corresponding field.

3 Run the simulation.

See Also Related Commands

findop(idnlarx)

findstates(idnlarx)

idnlarx

2-39

IDNLARX Model

Topics in the System Identification Toolbox User’s Guide

“Identifying Nonlinear ARX Models”

2-40

IDNLGREY Model

Purpose Simulate nonlinear grey-box model in Simulink software

Library System Identification Toolbox

Description Simulates systems of nonlinear grey-box (idnlgrey) models.

Input

Input signal to the model.

Output

Output signal from the model.

Dialog
Box

IDNLGREY model
Name of idnlgrey variable in the MATLAB workspace.

Initial state
Specify the initial states as one of the following:

• 'z': Specifies zero, which corresponds to a system starting
from rest.

• 'm': Specifies the internal initial states of the model.

2-41

IDNLGREY Model

• Vector of size equal to the number of states in the idnlgrey
object.

• An initial state structure array. For information about creating
this structure, type help idnlgrey/sim in the MATLAB
Command Window.

See Also Related Commands

idnlgrey

Topics in the System Identification Toolbox User’s Guide

“Estimating Nonlinear Grey-Box Models”

2-42

IDNLHW Model

Purpose Simulate Hammerstein-Wiener model in Simulink software

Library System Identification Toolbox

Description The IDNLHW Model block simulates a Hammerstein-Wiener (idnlhw)
model for time-domain input and output data.

Input Input signal to the model.

Output Simulated output from the model.

2-43

IDNLHW Model

Dialog
Box

Model
Name of the idnlhw variable in the MATLAB workspace.

Initial conditions
Specifies the initial states as one of the following:

• Zero: Specifies zero, which corresponds to a simulation starting
from a state of rest.

• State values: When selected, you must specify a vector
of length equal to the number of states in the model in the
Specify a vector of state values field.

If you do not know the initial states, you can estimate these
states, as follows:

2-44

IDNLHW Model

— To simulate around a given input level when you do
not know the corresponding steady-state output level,
you can estimate the equilibrium state values using the
findop(idnlhw) command.

For example, to simulate a model M about a steady-state
point where the input is 1 and the output is unknown, you
can enter X0, such that:

X0 = findop(M,'steady',1,NaN)

— To estimate the initial states such that the simulated
response of the model matches specified output data for the
same input, use the findstates(idnlhw).

For example, for the data set z and model m, you can enter
X0, such that:

X0 = findstates(m,z)

Examples Example 1

In this example, you estimate a Hammerstein-Wiener model from data
and compare the model output of the model to the measured output of
the system.

1 Load the sample data.

load twotankdata

2 Create a data object from sample data.

z = iddata(y,u,0.2, ...
'Name','Two tank system',...
'Tstart',0);

3 Estimate a Hammerstein-Wiener model.

mhw1 = nlhw(z,[1 5 3],pwlinear,pwlinear);

2-45

IDNLHW Model

4 Build the following Simulink model using the IDDATA Source,
IDNLHW Model, and Scope blocks.

5 Double-click the IDDATA Source block and enter the following into
the block parameter dialog box:

• IDDATA Object: z

Click OK.

6 Double-click the IDNLHW Model block and enter the following into
the block parameter dialog box:

• Model: mhw1

• Initial Conditions: Zero

7 Run the simulation.

Click the Scope block to view the difference between the measured
output and the model output. Use the Autoscale toolbar button to
scale the axes.

Example 2

In this example, you reduce the difference between the measured and
simulated responses using suitable initial state values. To achieve this,
you use the findstates command to estimate an initial state vector for
the model from the data.

1 Estimate initial states from the data z:

2-46

IDNLHW Model

x0 = findstates(mhw1,z,[],'maxiter',50);

2 Set the Initial Conditions to State Values. Enter x0 in the
corresponding field.

3 Run the simulation.

See Also Related Commands

findop(idnlhw)

findstates(idnlhw)

idnlhw

Topics in the System Identification Toolbox User’s Guide

“Identifying Hammerstein-Wiener Models”

2-47

OE Estimator

Purpose Estimate parameters of Output-Error model from SISO data in
Simulink software returning idpoly object

Library System Identification Toolbox

Description The OE block estimates the parameters of an Output-Error model, and
returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model
estimation, see oeOptions.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The output-error model is defined, as follows:

w t f w t f w t n b u t b u t n n

y t

n f n k bf b
() () () () ()

()

+ − + + − = − + + − − +

=
1 11 1 1

ww t e t() ()+

where

• w is the undisturbed output.

• y(t) is the output at time t.

• f fnf1 and b bnb1 are the parameters to be estimated.

• nf is the number of poles of the transfer function from the input to
the undisturbed output.

• nb +1 is the number of zeros of the transfer function from the input
to the undisturbed output.

2-48

OE Estimator

• nk is the number of input samples that occur before the inputs that
affect the current output.

• u t n u t n nk k b() ()− − − + 1 are the previous inputs on which the
current output depends.

• e(t) is a white-noise disturbance value.

The OE model can also be written in a compact way using the following
notation:

y t
B q
F q

u t n e tk()
()
()

() ()= − +

where

B q b b q b q

F q f q f q

n
n

n
n
b

b

f

f

()

()

= + + +

= + +

− − +

− −

1 2
1 1

1
11

and q−1
is the backward shift operator, defined by q u t u t− = −1 1() () .

The following block diagram shows the ARX model structure.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

2-49

OE Estimator

Output The OE Estimator block outputs a sequence of multiple models
(idpoly), estimated at regular intervals during the simulation.

The Length of Data window field in the block parameter dialog
box specifies the number of data samples to use for estimation, as the
simulation progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-50

OE Estimator

Dialog
Box

Orders of model [nb nf nk]
Integers nb, nf, and nk specify the number of B and F model
parameters and nk is the input-output delay, respectively.

How often to update model
Number of input data samples that specify the interval after
which to estimate a new model.

2-51

OE Estimator

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

2-52

OE Estimator

Examples This example shows how you can use the OE Estimator block in a
Simulink model.

1 Specify the data from iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:

• Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

• Add the OE Estimator block to the model. Set sample time in the
block to 0.1 seconds and the simulation end time to 30 seconds.

• Connect the Input and Output ports of the IDDATA Source block
to the u and y ports of the OE Estimator block, respectively.

3 Run the simulation.

The estimated models appear in the MATLAB Command Window
every 25 samples.

See Also Related Commands

oe

idpoly

2-53

OE Estimator

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

2-54

PEM Estimator

Purpose Estimate generic input-output polynomial model parameters from SISO
data using iterative prediction-error minimization method

Library System Identification Toolbox

Description The PEM Estimator block estimates linear input-output polynomial
models in Simulink software.

Each estimation generates a figure with the following plots:

• Actual (measured) output versus the simulated or predicted model
output.

• Error in simulated model, which is the difference between the
measured output and the model output.

Model
Definition

The input-output polynomial structure is defined, as follows:

Ay t
B
F

u t Nk
C
D

e t() () ()= − +

where

• y(t) is the output at time t.

• A, B, F, C, and D are the parameters a ana1 , b bnb1 , f fnf1 ,

c cnc1 and d dnd1 to be estimated.

• e t() is a white-noise disturbance.

Input The block accepts two inputs, corresponding to the measured
input-output data for estimating the model.

First input: Input signal.

Second input: Output signal.

2-55

PEM Estimator

Output The PEM Estimator block outputs a sequence of multiple models
(idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies
the number of data samples to use for estimation, as the simulation
progresses.

The output format depends on whether you specify the Model Name in
the block parameter dialog box.

2-56

PEM Estimator

Dialog
Box

Orders of model [na nb nc nd nf nk]
Integers na, nb, nc, nd, nf, and nk, specify the number of A, B, C, D,
and Fmodel parameters nk is the input-output delay, respectively.

Calculate after how many points
Number of input data samples that specify the interval after
which to estimate a new model.

2-57

PEM Estimator

Default: 25

Sample time
Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must
be consistent with this sample time.

Length of Data Window
Number of past data samples used to estimate each model. A
longer data window should be used for higher-order models. Too
small a value might cause poor estimation results, and too large a
value leads to slower computation.

Default: 200.

Model Name
Name of the model.

Whether you specify the model name determines the output
format of the resulting models, as follows:

• If you do not specify a model name, the estimated models display
in the MATLAB Command Window in a transfer-function
format.

• If you specify a model name, the resulting models are output to
the MATLAB workspace as a cell array.

Simulation/Prediction
Simulation: The algorithm uses only measured input data to
simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for
computing the response K steps in the future, where K is 1, 5, or 10.

2-58

PEM Estimator

Examples This example shows how you can use the PEM Estimator block in a
Simulink model.

1 Specify data in iddata1.mat for estimation:

load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows.

Add the IDDATA Source block and specify IODATA in the Iddata
object field of the IDDATA Source block parameters dialog box.

Add the PEM Estimator block to the model. Set the sample time in
the block to 0.1 seconds and the simulation end time to 30 seconds.

Connect the Input and Output ports of the IDDATA Source block to
the u and y ports of the PEM Estimator block, respectively.

3 Run the simulation.

The estimated models display in the MATLAB Command Window
every 25 samples.

See Also Related Commands

idpoly

pem

2-59

PEM Estimator

Topics in the System Identification Toolbox User’s Guide

“Identifying Input-Output Polynomial Models”

2-60

Index

IndexA
adaptive noise canceling 1-764
append 1-10

B
bodemag (Bode magnitude plots) 1-93

C
c2d 1-104
cell array 1-254
continuous-time

conversion to.. See conversion, model
conversion, model

discrete to continuous (d2c) 1-158
with negative real poles 1-162

resampling
discrete models 1-167

D
d2c 1-158
d2d 1-167
dB to magnitude 1-178
db2mag 1-178 1-577
dcgain 1-179
dead time. See delays
delays

combining 1-973
existence of, test for 1-295
hasdelay 1-295

Dirac impulse 1-493
discretization

available methods 1-114 1-169

E
evalfr 1-194

F
filt 1-244
first-order hold (FOH) 1-114
FRD (frequency response data) objects

data 1-244
frdata 1-244

frdata 1-244
freqresp 1-246
frequency response

at single frequency (evalfr) 1-194
frequency response function 1-853

G
gain

low frequency (DC) 1-179
get 1-253

H
hasdelay 1-295

I
impulse 1-493
impulse response 1-493
input

Dirac impulse 1-493
isempty 1-527
isproper 1-528
issiso 1-533

L
lsim 1-567
LTI properties

accessing property values (get) 1-253
displaying properties 1-253
property names 1-253 1-793
property values 1-253 1-793

setting 1-793

Index-1

Index

M
magnitude to dB 1-577
matched pole-zero 1-114
MIMO 1-493
model building

appending LTI models 1-10

N
numerator

value 1-254
nyquist 1-634

O
operations on LTI models

append 1-10
diagonal building 1-10

P
plotting

s-plane grid (sgrid) 1-810
z-plane grid (zgrid) 1-1004

pole 1-689
pole-zero

map (pzmap) 1-750
poles

computing 1-689
multiple 1-689
pole-zero map 1-750
s-plane grid (sgrid) 1-810
z-plane grid (zgrid) 1-1004

pzmap 1-750

R
realization

state coordinate transformation 1-875
resampling (d2d) 1-167

S
sample time

resampling 1-167
set 1-793
simulation of linear systems.. See time response
stability margins

pole 1-689
pzmap 1-750

state
transformation 1-875

state-space models
state order 1-998

step response 1-910

T
time response

impulse response (impulse) 1-493
MIMO 1-493
response to arbitrary inputs (lsim) 1-567
step response (step) 1-910

totaldelay 1-973
transfer functions

quick data retrieval (tfdata) 1-928
transmission zeros.. See zeros
triangle approximation 1-114
Tustin approximation 1-114 1-169

with frequency prewarping 1-114 1-169
tzero. . See zero

Z
zero 1-1001
zero-order hold (ZOH) 1-114 1-169
zero-pole-gain (ZPK) models

quick data retrieval (zpkdata) 1-1006
zeros

computing 1-1001
pole-zero map 1-750
transmission 1-1001

Index-2

	toc
	Functions – Alphabetical List
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon
	SearchOption structure when SearchMethod is specified as 'gn', '
	SearchOption structure when SearchMethod is specified as ‘lsqnon

	Blocks — Alphabetical List
	Index

